
Antenna House PDF Viewer SDK V6 / PDF Viewer API インタフェース仕様

内容

Antenna House PDF Viewer SDK V6 / PDF Viewer API インタフェース仕様 1

1. 概要 ... 1

2. 動作環境 ... 1

2.1. 対応 OS ... 1

2.2. 仮想環境 ... 1

3. 制限事項 ... 2

3.1. 対象 PDF ファイル ... 2

3.2. レンダリング品質および性能について .. 2

3.3. 複数プロセス/スレッドでの同時使用 .. 3

3.4. .NET / .NET Framework からの利用... 3

3.5. その他 ... 4

4. 開発環境 ... 5

4.1. C++/C .. 5

4.2. .NET および .NET Framework .. 5

4.3. インタフェース ... 6

4.3.1. C++/C .. 6

4.3.2. .Net8 ... 6

4.3.3. .Net6 ... 6

4.3.4. .Net Framework ... 6

4.4. 実行に必要なファイル ... 7

5. 機能 ... 10

6. ご利用上の注意 .. 12

6.1. 文字列 .. 12

6.2. 座標系 .. 12

6.3. レンダリングモード .. 12

6.3.1. Direct2D ... 12

6.3.2. GDI+ .. 12

6.4. 32bit 版／64bit 版 .. 12

6.5. エラー処理について .. 13

6.5.1. API 呼び出し時の結果判定 ... 13

6.5.2. エラーについて .. 13

6.6. 印刷について .. 13

6.7. .NET および.NET Framework インタフェース ... 14

6.8. C インタフェース ... 15

7. クラス ... 17

7.1. クラス名 .. 17

7.2. メソッド .. 17

7.2.1. ストリームオープン .. 17

7.2.2. ファイルオープン .. 18

7.2.3. クローズ .. 19

7.2.4. 読み込みスレッド開始 .. 19

7.2.5. オープンされているか .. 20

7.2.6. 内容のコピー可能か .. 20

7.2.7. 印刷可能か .. 20

7.2.8. SDK バージョン番号の取得 ... 20

7.2.9. PDF バージョンの取得 ... 21

7.2.10. 作成日付の取得 .. 21

7.2.11. 更新日付の取得 .. 21

7.2.12. タイトルの取得 .. 22

7.2.13. 作成者の取得 .. 22

7.2.14. サブタイトルの取得 .. 22

7.2.15. キーワードの取得 .. 23

7.2.16. アプリケーションの取得 .. 23

7.2.17. PDF 変換の取得 ... 23

7.2.18. ページ数の取得 .. 24

7.2.19. 解析済みページ数の取得 .. 24

7.2.20. ページサイズの取得 .. 24

7.2.21. ページの表示 .. 25

7.2.22. リモートデスクトップ表示モードの設定 .. 26

7.2.23. リモートデスクトップ表示モードか問い合わせる .. 26

7.2.24. バッファ表示モードの設定 .. 26

7.2.25. バッファ表示モードか問い合わせる .. 27

7.2.26. 表示バッファの削除 .. 27

7.2.27. スムージングが利用できるか問い合わせる .. 27

7.2.28. スムージングの設定 .. 28

7.2.29. スムージング設定の取得 .. 28

7.2.30. 文字表示の問い合わせ .. 28

7.2.31. 文字表示の設定 .. 29

7.2.32. Direct2D を使用するか ... 29

7.2.33. Direct2D 設定 ... 29

7.2.34. 注釈表示の問い合わせ .. 30

7.2.35. 注釈表示の設定 .. 30

7.2.36. 高速プレビューモードか .. 30

7.2.37. 高速プレビューモード設定 .. 30

7.2.38. ブレンドモード無効か .. 31

7.2.39. ブレンドモード無効設定 .. 31

7.2.40. ウォータマークテキスト設定 .. 32

7.2.41. ウォータマークテキスト取得 .. 32

7.2.42. ウォータマークフォントファミリ設定 .. 32

7.2.43. ウォータマークフォントファミリ取得 .. 32

7.2.44. ウォータマークフォントウエイト設定 .. 33

7.2.45. ウォータマークフォントウエイト取得 .. 33

7.2.46. ウォータマークフォントスタイル設定 .. 33

7.2.47. ウォータマークフォントスタイル取得 .. 34

7.2.48. ウォータマーク不透明度設定 .. 34

7.2.49. ウォータマーク不透明度取得 .. 34

7.2.50. 印刷開始 .. 35

7.2.51. 印刷終了 .. 35

7.2.52. 印刷中止 .. 36

7.2.53. ページの印刷 .. 36

7.2.54. 印刷開始（拡張） .. 36

7.2.55. GdiPlus でイメージを操作するか問い合わせ ... 38

7.2.56. GdiPlus でイメージを操作する設定 ... 38

7.2.57. BMP の作成 .. 38

7.2.58. JPEG の作成 ... 40

7.2.59. PNG の作成 .. 42

7.2.60. TIFF の作成 .. 43

7.2.61. 検索ページ指定 .. 45

7.2.62. 検索ページ数の設定 .. 45

7.2.63. 文字列検索 .. 46

7.2.64. 全検索 .. 46

7.2.65. 次検索 .. 46

7.2.66. 検索状態解除 .. 47

7.2.67. マーク解除 .. 47

7.2.68. 検索位置取得 .. 47

7.2.69. ページの検索結果取得 .. 48

7.2.70. 検索状態かの問い合わせ .. 49

7.2.71. 全検索状態かの問い合わせ .. 49

7.2.72. 全検索でマークした個数を得る .. 49

7.2.73. 反転色の設定 .. 49

7.2.74. 矩形内テキストの取得 .. 50

7.2.75. 全選択設定 .. 50

7.2.76. 全テキスト取得 .. 50

7.2.77. 矩形選択の設定 .. 51

7.2.78. ページ回転の取得 .. 51

7.2.79. ページ回転の設定 .. 52

7.2.80. リンク注釈ヒットテスト .. 52

7.2.81. リンク注釈内部矩形取得 .. 53

7.2.82. リンク注釈外部ファイル名取得 .. 53

7.2.83. デフォルトフォントの設定 .. 54

7.2.84. 読み込みページ数の設定 .. 54

7.2.85. 読み込みメモリ上限の設定 .. 55

7.2.86. テキスト位置の取得 .. 55

7.2.87. テキスト範囲の取得 .. 56

7.2.88. 位置指定テキスト取得 .. 56

7.2.89. 矩形内テキスト範囲の取得 .. 57

7.2.90. 矩形内テキスト情報の取得 .. 57

7.2.91. 位置指定テキスト情報の取得 .. 60

7.2.92. 矩形内パス情報の取得 .. 61

7.2.93. カラープロファイルの設定 .. 63

7.2.94. エラーがあるか .. 64

7.2.95. 致命的エラーか .. 64

7.2.96. エラー番号の取得 .. 65

7.2.97. エラーメッセージの取得 .. 65

7.2.98. エラーの廃棄 .. 65

7.2.99. エラーのクリア .. 66

7.2.100. ライセンス情報の取得 .. 67

7.2.101. 画像情報の取得 .. 68

8. エラー一覧表 .. 70

8.1. エラー一覧表 .. 70

8.2. PDF エラー一覧 ... 74

改訂履歴 ... 80

1

1. 概要

本書では「PDF Viewer API」のインタフェース仕様について説明します。「PDF Viewer API」は PDF
を表示するための C++/C/.NET/.NET Framework 向けのライブラリです。

2. 動作環境

2.1. 対 応 OS

対応 OS Windows 11 / 10 64 ビット 日本語版

Windows Server 2025 / 2022 / 2019 日本語版

※ Microsoft Visual C++ 2019 再頒布可能パッケージが必要です。

※ .NET からの利用には .NET Framework 4.6.2 以降 / .NET 6 / .NET8 のいずれかが必要です。

※ Windows Server ではデスクトップエクスペリエンスが必要です。Server Core / Nano Server は
サポートされません。

※ Microsoft 社のメインストリームサポートが終了したプラットフォームはサポート対象外です。

2.2. 仮 想 環 境

仮想環境（VMware や Hyper-V など）で実行する場合、実環境上と同じ動作が保証されているので
あれば機能制限はありません。

2

3. 制限事項

3.1. 対 象 PDF フ ァ イ ル

・ PDF 仕様（PDF32000-2）に準拠した PDF1.3 〜 PDF2.0

・ オープンできる PDF のファイルサイズは 2GB までとなります。

・ ページ数は明示的な制限はしておりません。

3.2. レ ン ダ リ ン グ 品 質 お よ び 性 能 に つ い て

・ 対象 PDF であっても一部正しく表示できない項目があります。詳しくは「PDFViewerSDK 表示仕
様.pdf」をご覧ください。

・ PDF ファイルや実行環境など条件によっては、表示仕様に記載されていない未知の制限が存在する
場合があります。

・ 表示や画像出力や印刷のレンダリング品質や速度や消費メモリなどの性能について、特定の品質や
性能を保証するものではありません。特に Adobe Acrobat/Adobe Reader を含む他社製品の PDF
ビューアと同等の品質や性能を保証するものではありません。

・ 表示や画像出力や印刷の品質および性能は、実行環境やプリンタおよびプリンタドライバ、PDF フ

ァイルのデータ、描画領域のサイズ、解像度、カラー、拡大縮小率、その他要因によって影響を受
けます。条件が違う場合には、必ずしも同じ結果になりません。

・ 表示と画像出力、印刷では異なる結果になる場合があります。

・ レンダリング品質や性能について、実運用環境と同等の環境や出力方法、また実際に扱うものと同
等の PDF データで導入前によくご確認ください。

・ 下記の場合に表示や印刷が遅くなります。

 半透明やブレンドを含む PDF

 細かなパターンやパスを多数含む PDF

・ 用紙サイズの大きな PDF ファイルや、PDF データ内に大きな画像を含む場合など、レンダリング処
理中にメモリが不足した場合、ページ全体もしくはページの一部が描画されないことがあります。

・ 32bit 版、とくに.NET Framework、Visual Basic のランタイムを併用する場合はメモリ不足に陥り
やすいため、そのような場合は、64bit 版やネイティブアプリケーションをご検討ください。

・ タスクスケジューラやサービス等、デスクトップが存在しない環境では、場合によって PDF が正し
く印刷や画像出力されない可能性があります。

3

・ PDF/A、PDF/X 等の PDF ファイルの表示は可能ですが、表示に関する要件をすべて満たしませ

ん。特に PDF のプロファイルの扱いは厳密には従っていないため、色が正確ではない場合がありま
す。

・ モノクロ二値のデバイスに表示・印刷した場合や、画像ファイル出力において、モノクロ

（IMAGECOLOR_MONOCHROME）、ブラック（IMAGECOLOR_BLACK）を指定した場合は、十
分なレンダリング品質が得られません。

・ ピクセル単位での描画の正確性は保証しておりません。アンチエイリアスのかかり、線の幅の均一
さなどご希望通りとならないことがあります。

・ Direcdt2D を使用しない場合、Smoothing には GDI+が使用されますが、Micorosoft 社は GDI+の

サービスでの利用をサポートしておりません。サービスでのご利用時は場合によって PDF が正しく

印刷や画像出力されない可能性があります。Smoothing を OFF にしてご利用いただくことをお勧め
いたします。

3.3. 複 数 プ ロ セ ス /ス レ ッ ド で の 同 時 使 用

・ 複数のプロセスで API を同時に使用することは問題ありません。

・ 同一プロセス内の複数のスレッドで API を同時に使用することは、次の例外を除き問題ありませ
ん。

・ 複数スレッドでの印刷はできません。PDFDocument クラスの下記の API は、複数スレッドでの同
時使用には非対応です。

・ startPrint() / startPrintExt() / startPrintExt2()

・ endPrint()

・ abortPrint()

・ printPage()

3.4. .NET / .NET Framework か ら の 利 用

・ 画面表示や印刷は Win32 GDI を利用します。ディスプレィやプリンタのデバイスコンテキストなど

の準備は Win32 API を利用して上位アプリケーションで行う必要があります。P/Invoke 経由で行
うサンプル(ApiDotNetCSharp)を添付しております。

・ System.Drawing、System.Printing 名前空間などの .NET / .NET Framework のグラフィックスや印
刷フレームワークには対応しておりません。

・ System.Pringing 名前空間の印刷機能と drawPage メソッドを使用して印刷する事は可能ですが、
印刷速度が遅くなることが判明しておりますので推奨いたしません。

4

3.5. そ の 他

・ 文字列検索では、MediaBox や CropBox の指定に関わらず Box 外の文字列も検索にヒットします。

・ フォーム XObject に不透明度やブレンドモードが指定されている場合はテキスト検索やテキスト抽
出ができません。

5

4. 開発環境

4.1. C++/C

・ Microsoft Visual Studio2019 でビルドされています。

・ 呼び出し側のプログラムは、互換性のあるコンパイラを使用してください。

検証済みの環境 Microsoft Visual Studio 2019 (Visual C++)

Microsoft Visual Studio 2022 (Visual C++)

・ バージョンが異なる Visual C++ からは std::stream を引数にもつ API は使用できません。ファイル
名指定の API をご利用ください。

・ wchar_t はビルトイン型と unsigned short 両方のメソッドを export しています。wchar_t の扱いに
より、どちらかのメソッドが呼び出されます。

・ Visual C++以外のコンパイラでは C インタフェースを使用してください。

・ UWP/Windows ストアアプリ開発に対応しておりません。

4.2. .NET お よ び .NET Framework

・ .NET8、.NET6 または、.NET Framework 4.6.2 以降に対応しています。

・ Microsoft Visual Studio 2019、C++/CLI で開発されています。

・ 動作にはネイティブ DLL が必要で、アーキテクチャ（x86 または x64）に依存します。

・ 上位アプリケーションのアーキテクチャ（x86 または x64）にあわせ、32bit/64bit 版のバイナリを
使用してください。

・ ANY CPU は推奨しておりません。ご利用になる場合は正しい DLL がロードされるよう構成する必
要があります。

・ UWP/Windows ストアアプリ開発に対応しておりません。

6

4.3. イ ン タ フ ェ ー ス

4.3.1. C++/C

ネームスペース AvsViewerSDK

ヘッダファイル PDFViewerSDK.h

ライブラリファイル [32bit 版] lib\Win32\AvsPDFViewerSDK.lib

[64bit 版] lib\x64\AvsPDFViewerSDK.lib

※ヘッダファイルに定義されていても、本ドキュメントに記載のない API はサポートされません。

4.3.2. .Net8

ネームスペース AvsDotNetViewerSDK

DLL [32bit 版] bin\Win32\AvsPDFViewerSDK60Net80.dll

[64bit 版] bin\x64\AvsPDFViewerSDK60Net80.dll

 ※定義されていても、本ドキュメントに記載のない API はサポートされません。

4.3.3. .Net6

ネームスペース AvsDotNetViewerSDK

DLL [32bit 版] bin\Win32\AvsPDFViewerSDK60Net60.dll

[64bit 版] bin\x64\AvsPDFViewerSDK60Net60.dll

 ※定義されていても、本ドキュメントに記載のない API はサポートされません。

4.3.4. .Net Framework

ネームスペース AvsDotNetViewerSDK

DLL [32bit 版] bin\Win32\AvsDotNetViewerSDK.dll

[64bit 版] bin\x64\AvsDotNetViewerSDK.dll

※定義されていても、本ドキュメントに記載のない API はサポートされません。

7

4.4. 実 行 に 必 要 な フ ァ イ ル

アプリケーションに応じて 32bit 版または 64bit 版をご利用ください。

・ アプリケーション本体(exe ファイル)と同じフォルダに置いてください。

・ 32bit 版及び 64bit 版のファイル名が同じであるため、ご注意ください。

アーキテクチャ 必要になる DLL やリソース

32bit 版 bin\Win32 フォルダに含まれる下記ファイル。

・ AvsPDFViewerSDK60.dll
・ AvsPDFViewerSDK60Net80.dll (.NET8 の場合)
・ AvsPDFViewerSDK60Net60.dll (.NET６の場合)
・ AvsDotNetGuiCtl.dll (.NET Framework の場合)
・ Ijwhost.dll (.NET8 または.NET６の場合)
・ AvsAHCertificate40.dll
・ AvsAHCommon16.dll
・ AvsAHDMC16.dll
・ AvsAHFontService17.dll
・ AvsAHGraphicService12.dll
・ AvsAHPDFEditLib10.dll
・ AvsAHPDFLib40.dll
・ AvsCommon60.dll
・ AvsEngine60.dll
・ AvsFont60.dll
・ AvsGdiCtl60.dll
・ AvsGraphic60.dll
・ AvsPDFCreator60.dll
・ AvsPdfReader60.dll
・ AvsPDFRes60.dll
・ AvsPdfTk71.dll
・ AvsPdfTkEx71.dll
・ AvsPDFToolPage60.dll
・ AvsRender60.dll
・ AvsSVGCreator60.dll
・ AvsText60.dll
・ AvsXfoCommon60.dllicudt55.dll
・ icuin55.dll
・ icuuc55.dll

8

・ JapanColor2001Coated.icc

64bit 版 bin\x64 フォルダに含まれる下記ファイル。

・ AvsPDFViewerSDK60.dll
・ AvsPDFViewerSDK60Net80.dll (.NET8 の場合)
・ AvsPDFViewerSDK60Net60.dll (.NET６の場合)
・ AvsDotNetGuiCtl.dll (.NET Framework の場合)
・ Ijwhost.dll (.NET8 または.NET６の場合)
・ AvsAHCertificate40.dll
・ AvsAHCommon16.dll
・ AvsAHDMC16.dll
・ AvsAHFontService17.dll
・ AvsAHGraphicService12.dll
・ AvsAHPDFEditLib10.dll
・ AvsAHPDFLib40.dll
・ AvsCommon60.dll
・ AvsEngine60.dll
・ AvsFont60.dll
・ AvsGdiCtl60.dll
・ AvsGraphic60.dll
・ AvsPDFCreator60.dll
・ AvsPdfReader60.dll
・ AvsPDFRes60.dll
・ AvsPdfTk71.dll
・ AvsPdfTkEx71.dll
・ AvsPDFToolPage60.dll
・ AvsRender60.dll
・ AvsSVGCreator60.dll
・ AvsText60.dll
・ AvsXfoCommon60.dll
・ icudt55.dll
・ icuin55.dll
・ icuuc55.dll
・ JapanColor2001Coated.icc

・ 動作には別途「Visual Studio 2015、2017、2019 および 2022 用 Microsoft Visual C++ 再頒

布可能パッケージ」のインストールが必要です。

以下の URL からダウンロードしてインストールしてください
https://support.microsoft.com/ja-jp/help/2977003/the-latest-supported-visual-c-downloads
[32bit 版] vc_redist.x86.exe

https://support.microsoft.com/ja-jp/help/2977003/the-latest-supported-visual-c-downloads

9

[64bit 版] vc_redist.x64.exe

10

5. 機能

PDF Viewer API には次の機能があります。

カテゴリ 機能

PDF のオープン・クローズ ・ PDF1.3〜PDF1.7

・ PDF2.0 (V5.0)

文書情報の取得

・ 作成日付、更新日付

・ タイトル、作成者、サブタイトル、キーワード、アプリケーシ
ョン、PDF 変換

・ PDF バージョン

アクセス権限情報の取得

・ 内容のコピーが可能か

・ 印刷可能か

ページ ・ ページ数の取得

・ ページサイズの取得

・ ページ表示の回転

アプリケーションウインド
ウへの PDF の描画

・ 文字、線、画像のスムージング：印刷にも適用可

・ 全てのカラースペースに対応

・ カラープロファイルの設定（RGB、CMYK、グレースケール、
出力）

印刷 ・ ページを用紙に合わせる

・ 印刷時の向き、サイズ、印刷位置の調整

・ ヘッドレス印刷（印刷ダイアログを表示しない）

画像化

・ BMP、PNG、JPEG、 TIFF 形式

・ ページ単位、ページ内矩形領域を画像に変換

検索

・ ページ数単位 全文検索 検索位置の取得

・ ヒットしたテキスト矩形の取得

テキスト抽出 ・ 矩形内のテキスト、ページ単位、全テキスト

注釈 ・ Link 注釈の矩形情報、リンク先 URL の取得

表示モード ・ グラフィックエンジン切り替え：Direct2D(V5.0)/GDI*/GDI

11

・ GDI+時のスムージング設定

・ リモートデスクトップ表示モード

・ 注釈表示の切り替え（V5.0）

・ PDF Tool API 閲覧制限 PDF の制限表示（V5.0）

ウォーターマーク ・ ウォーターマークの設定

・ テキスト、フォントファミリ、ウェイト、スタイル、不透明度

ページの指定範囲の情報取
得

・ パス情報（V3.5）

・ テキスト情報（V3.5）

・ 画像情報（V6.0）

12

6. ご利用上の注意

6.1. 文 字 列

・ 扱う文字列は全て UNICODE となります。

6.2. 座 標 系

・ 扱う座標系は、表示上の左上を原点とし、ｘ座標は右に向かって正、ｙ座標は下に向かって正
の整数となります。

・ 単位は TWIP です。(1TWIP＝1/20 ポイント＝1/1440 インチ)

6.3. レ ン ダ リ ン グ モ ー ド

6.3.1. Direct2D

・ Direct2D を使用して高速な描画を行います。既定では Direct2D を使用します。

・ 画面表示・画像出力が対象です。

・ Direct2D 利用時でも印刷は従来どおり GDI/GDI+を使用して行います。

6.3.2. GDI+

・ Direct2D を使用しない場合、Gdiplus.dll を使用して Smoothing を行うことができます。

・ Gdiplus の初期化は行われていなければ SDK が行います。アプリケーションレベルで初期化し
た場合は SDK 終了後シャットダウンしてください。

・ 画像出力、印刷でも使用できます。

注意事項）

・ Micorosoft 社は Gdiplus のサービスでの利用はサポートしておりません。

・ Smoothing をすべて off にした場合でも、印刷時のシェーディングの描画にのみ Gdiplus が
使用されます。

6.4. 32bit 版 ／ 64bit 版

13

・ 32bit 版の場合、状況によってメモリ不足で画像出力関数（makeXXXPage）等がエラーで失敗
する場合があります。その場合は LAA オプションや 64bit 版を検討ください。

・ 64bit 版ではより容量の大きな PDF を処理できます。ただし、既定でプロセスのヒープの上限が 500MB

となっておりますので、setLoadMemoryLimit 関数を使用して、上限を設定してください。（大きくし過

ぎますと、オープン直後にバックグランドスレッドで PDF ページの解析するページ数も増えるため、動作

が遅くなります。）

6.5. エ ラ ー 処 理 に つ い て

6.5.1. API 呼 び 出 し 時 の 結 果 判 定

・ API 呼出の結果判定は、API の戻り値(bool)で行ってください。

例）openDocument、makeBmpPage 等

・ 失敗した場合、エラー番号を取得して原因について確認してください。

6.5.2. エ ラ ー に つ い て

・ エラーには「致命的エラー」と「致命的でないエラー（警告）」があります。

・ 致命的かそうでないかに関わらず、複数のエラーが発生する場合があります。

例）複数の箇所にフォーマット不正があるなどの場合

・ 成功の場合でも「致命的でないエラー（警告）」が発生することがあります。

・ 発生したエラーは廃棄しない限り、PDFDocument に蓄積されます。

・ getErrorCode() / getErrorMessage()/isFatalError() は蓄積された最初のエラーについての情
報を返します。

・ 蓄積されたエラーについて確認するには、エラーがなくなるまで、エラー情報の確認と
abandonError()でのエラー廃棄を繰り返します。

・ ApiPdfPrint サンプル CheckError 関数にエラーチェックの例がございます。

6.6. 印 刷 に つ い て

・ 印刷開始時に startPrint/startPrintExt/startPrintExt2 に渡される DEVMODE 構造
体は以下のように扱われます。なお、これは現状での動作です。今後もこの通りで
あることは保証しておりません。

14

1. 印刷開始時に渡された DEVMODE をコピーします。（startPrintXXX メソッ
ド）

2. 各ページごとに PDF ページのサイズや回転、印刷設定を評価して DEVMODE
を修正し、ページの印刷前に ResetDC でプリンターへ設定しなおしていま
す。(printPage メソッド）

3. ２で変更する可能性がある DEVMODE のフィールドは以下です。
 dmOrientation
 dmPaperSize
 dmPaperLength
 dmPaperWidth
 dmDefaultSource
 dmDuplex

・ PDF ではページによって向きや用紙サイズが異なります。印刷開始メソッドで指定
された印刷設定を行うため上記 1〜３を行っております。印刷途中で ResetDC を行
うと、誤動作する可能性があります。

6.7. .NET お よ び .NET Framework イ ン タ フ ェ ー ス

・ PDF Viewer API は C++で開発されたネイティブ DLL を利用しています。このため、

32bit・64bit のアーキテクチャに依存します。開発するアプリケーションのプラットフォー
ムは「x64」または「x86」をご利用ください。「ANY CPU」は推奨しません。

・ PDF Viewer SDK の DLL を参照するとき、ビルド対象のプラットフォームが”x86”である

か”x64”であるかにあわせて、それぞれ 32bit 版 DLL、64bit 版 DLL を参照する必要がありま

す。Visual Studio の .NET6/.NET Framework プロジェクト上で、プラットフォームに合わ

せて別の DLL 参照を指定することはできません。このため、例えば次のような方法で切り替
える必要があります。

【方法１】 プロジェクトを “x86”、”x64”の両方用意し、各プロジェクトでは、それぞれター

ゲットに応じた DLL を参照します。ソリューションファイルでは、”x86”、”x64”ターゲット

にあわせて、追加するプロジェクトを x86 版、x64 版と切り替えるよう構成します。この方

法の利点は、プロジェクトファイルを直接編集する必要がなく、Visual Studio 上で編集でき
ることです。

【方法２】プロジェクトの DLL 参照を手動で編集する方法です。C#の場合、”.csproj”ファイ
ルにおける参照設定を Include 属性でターゲットにあわせてそれぞれ指定します。

15

 <Reference Include="AvsDotNetViewerSDK">

 <HintPath Condition=" '$(Platform)' == 'x86' ">..¥..¥Windows-

VS2019¥Win32¥Release¥AvsDotNetViewerSDK.dll</HintPath>

 <HintPath Condition=" '$(Platform)' == 'x64' ">..¥..¥Windows-

VS2019¥x64¥Release¥AvsDotNetViewerSDK.dll</HintPath>

 </Reference>

ここでは HintPath で条件指定を行い切り替えていますが、ItemGroup で切り替えることも可
能です。

この方法の利点は x86、x64 それぞれプロジェクトを用意する必要がない点です。一方手

動で編集するため、間違いやすい、Visual Sutido で不意に編集を行うと編集が上書きされて

しまう等のデメリットがあります。プロジェクトファイルに詳しくなければ１つめの方法を
お勧めいたします。SDK 添付のサンプルプロジェクトではこちらの方法を使用しています。

参考) https://docs.microsoft.com/ja-jp/visualstudio/ide/how-to-configure-projects-to-
target-platforms?view=vs-2019

6.8. C イ ン タ フ ェ ー ス

C のインタフェースは、C++インタフェースの PDFDocument クラスを呼び出すためのものです。

・ PDFDocument クラスの作成は PdfvCiCreateViewerDocument()で行い、削除は
PdfvCiDeleteViewerDocument()で行います。

・ PDFDocument クラスのメソッド呼び出しは、メソッド名に PdfvCi を付け、メソッド名の先頭

を大文字にした関数を用意してあります。1 番目のパラメータに
PdfvCiCreateViewerDocument()で作成した HPDFVIEWER を指定してください。

※一部、未対応の API がございます。

・ 機能は PDFDocument クラスの対応する C++インタフェースを参照してください。

・ C++インタフェースから以下の変更があります。

 変数の参照はポインタになります。

 std::ostream&のパラメータは wchar_t*のファイル名渡しになります。

 イメージ作成の戻り値は false がオープン失敗になります。

https://docs.microsoft.com/ja-jp/visualstudio/ide/how-to-configure-projects-to-target-platforms?view=vs-2019

16

17

7. クラス

7.1. ク ラ ス 名

クラス名は PDFDocument です。

7.2. メ ソ ッ ド

7.2.1. ス ト リ ー ム オ ー プ ン

bool openDocument(std::istream& stream, const wchar_t* passWord=NULL, DWORD loadStart=0,

const wchar_t* appName=NULL, const wchar_t* keyName=NULL, const wchar_t* value=NULL);

bool OpenDocument(Stream stream, String passWord, long loadStart, String appName, String keyName,

String value); (.Net)

引数：

stream：PDF データストリーム

passWord：パスワード

loadStart：2 ページ目以降の解析開始までの時間(msec)。

appName：アプリケーション名

keyName：アプリケーション辞書キー名

value：アプリケーション辞書キー値

戻り値：

true 成功

false 失敗 失敗した場合、エラーコードを検査します。

エラーコード AvsViewerSDK::PDFDocument::ERROR_PASSWORD は、PDF にパスワードの設定

があり、指定したパスワードが一致しないことを示します。パスワードの入力を行い、再度
openDocument()を呼び出します。

解説：

・ ストリームを全て読み込みます。stream は、オープン終了後必要ありません。

18

・ 1 ページ目のデータを解析し戻ります。2 ページ目以降は、スレッドを作成し loadStart 時間

Sleep()しページデータを解析します。loadStart が０の場合は、最初のページ表示
drawPage()が呼ばれたときにスレッドを作成しページデータの解析を開始します。

・ 表示せず印刷を行う場合、loadStart を指定することで解析しながら、印刷できます。また、
loadStart が０でも印刷時に解析を行います（同じスレッド）。

・ 解析済みのページ数は getLoadCount()で取得することができます。

・ 200 ページを超える PDF は 100 ページまで読み込み、残りは参照時に読み込みます。読み込

んだページ数が 200 を超えた場合、古い参照ページから廃棄し、次回参照時に再度読み込みを
行います。このページ数は setLoadPageCount()で変更できます。

・ 廃棄されるのはページのデータのみで、ページから参照されるフォントや画像などは一度読み
込まれると参照されるページが廃棄されても読み込まれたままとなります。

・ アプリケーション名、キー名、キー値を指定すると、一致する Form XObject を非表示にしま
す。

7.2.2. フ ァ イ ル オ ー プ ン

bool openDocument(const wchar_t* fileName, const wchar_t* passWord=NULL,

DWORD loadStart=0, const wchar_t* appName=NULL, const wchar_t* keyName=NULL,

const wchar_t* value=NULL);

bool OpenDocument(String fileName, String passWord, long loadStart, String appName,

String keyName, String value); (.Net)

引数：

fileName：PDF ファイル名

passWord：パスワード

loadStart：2 ページ目以降の読み込み開始までの時間(msec)。

appName：アプリケーション名

keyName：アプリケーション辞書キー名

value：アプリケーション辞書キー値

戻り値：

true 成功

false の場合はストリームオープンと同様にエラーを検査します。

解説：

19

・ ファイルをオープンし、1 ページ目のデータを読み込み戻ります。

・ 1 ページ目のデータを解析し戻ります。2 ページ目以降は、スレッドを作成し loadStart 時間

Sleep()しページデータを解析します。loadStart が０の場合は、最初のページ表示
drawPage()が呼ばれたときにスレッドを作成しページデータの解析を開始します。

・ 表示せず印刷を行う場合、loadStart を指定することで解析しながら、印刷できます。また、
loadStart が０でも印刷時に解析を行います（同じスレッド）。

・ 解析済みのページ数は getLoadCount()で取得することができます。

・ 最後のページの読み込みが終了するとファイルをクローズします。その間ファイルの変更はで
きません。

・ 200 ページを超える PDF は 100 ページまで読み込み、残りは参照時に読み込みます。読み込

んだページ数が 200 を超えた場合、古い参照ページから廃棄し、次回参照時に再度読み込みを
行います。このページ数は、setLoadPageCount()で変更できます。

・ 200 ページを超える文書の場合ファイルはオープンしたままになります。オープンしたままに
したくない場合はストリームオープンを使用してください。

・ 廃棄されるのはページのデータのみで、ページから参照されるフォントや画像データは一度読
み込まれると参照されるページが廃棄されても読み込まれたままとなります。

・ アプリケーション名、キー名、キー値を指定すると、一致する Form XObject を非表示にしま
す

7.2.3. ク ロ ー ズ

void closeDocument();

void CloseDocument(void); (.Net)

戻り値：

なし

7.2.4. 読 み 込 み ス レ ッ ド 開 始

void startLoadThread();

void StartLoadThread(void); (.Net)

解説：

後から読み込みスレッドを開始する場合に呼びます。openDocument()で loadStart に 0 を指定し、
表示も行わない場合にこのメソッドで開始を指定できます。

20

既に読み込みスレッドがある場合は何もせず戻ります。

7.2.5. オ ー プ ン さ れ て い る か

bool isOpen() const;

property bool IsOpen (.Net) 読み取りのみ

戻り値：

true オープン済み。

7.2.6. 内 容 の コ ピ ー 可 能 か

bool isEnableCopyContents() const;

property bool IsEnableCopyContents (.Net) 読み取りのみ

戻り値：

true コピー可能

解説：

PDF ファイルにコピー不可の指定があっても、イメージ作成機能（makeXXXPage）は動作しま
す。PDF ファイルに従ったアクセス制御はアプリケーションの責任で行ってください。

7.2.7. 印 刷 可 能 か

bool isEnablePrintout() const;

property bool IsEnablePrintout （.Net）読み取りのみ

戻り値：

true 印刷可能

解説：

PDF ファイルが印刷不可の場合、印刷は行えません。

7.2.8. SDK バ ー ジ ョ ン 番 号 の 取 得

static int getSDKVersion(wchar_t* buffer, int size);

property String SDKVersion

引数：

21

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.9. PDF バ ー ジ ョ ン の 取 得

int getVersion(wchar_t* buffer, int size) const;

property String Version （.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.10. 作 成 日 付 の 取 得

int getCreationDate(wchar_t* buffer, int size) const;

property String CreationDate （.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.11. 更 新 日 付 の 取 得

int getModifyDate(wchar_t* buffer, int size) const;

property String ModifyDate（.Net）読み取りのみ

22

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.12. タ イ ト ル の 取 得

int getTitle(wchar_t* buffer, int size) const;

property String Title（.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.13. 作 成 者 の 取 得

int getAuthor(wchar_t* buffer, int size) const;

property String Author（.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.14. サ ブ タ イ ト ル の 取 得

int getSubject(wchar_t* buffer, int size) const;

23

property String Subject（.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.15. キ ー ワ ー ド の 取 得

int getKeywords(wchar_t* buffer, int size) const;

property String Keywords（.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.16. ア プ リ ケ ー シ ョ ン の 取 得

int getCreator(wchar_t* buffer, int size) const;

property String Creator（.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.17. PDF 変 換 の 取 得

24

int getProducer(wchar_t* buffer, int size) const;

property String Producer（.Net）読み取りのみ

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.18. ペ ー ジ 数 の 取 得

int getPageCount() const;

property int PageCount（.Net）読み取りのみ

戻り値：

ページ数

7.2.19. 解 析 済 み ペ ー ジ 数 の 取 得

int getLoadCount() const;

property int LoadCount（.Net）読み取りのみ

戻り値：

解析済みページ数

解説：

内部で解析済みページ数を返します。このページはすぐに表示することができます。

解析済みでないページも表示できますが、表示時に解析を行います。

7.2.20. ペ ー ジ サ イ ズ の 取 得

SIZE getPageSize(int pageNo) const;

AvsSize GetPageSize(int pageNo);（.Net）

戻り値：

ページサイズ(単位：TWIP)

25

7.2.21. ペ ー ジ の 表 示

void drawPage(int pageNo, HDC hdc, const POINT* dispOrg, float scale, bool drawBg) const;

void DrawPage(int pageNo, IntPtr hdc, AvsPoint dispOrg, float scale, bool drawBg); (.Net)

void drawScalingPage(int pageNo, HDC hdc, const POINT* dispOrg, float scaleH, float scaleV, bool
drawBg) const;

void DrawScalingPage(int pageNo, IntPtr hdc, AvsPoint dispOrg, float scaleH, float scaleV, bool
drawBg); (.Net)

void drawPage(int pageNo, HDC hdc, const POINT* dispOrg, float scale, bool drawBg, bool
drawResult) const;

void DrawPage(int pageNo, IntPtr hdc, AvsPoint dispOrg, float scale, bool drawBg, bool
drawResult); (.Net)

void drawScalingPage(int pageNo, HDC hdc, const POINT* dispOrg, float scaleH, float scaleV, bool
drawBg, bool drawResult) const;

void DrawScalingPage(int pageNo, IntPtr hdc, AvsPoint dispOrg, float scaleH, float scaleV, bool
drawBg, bool drawResult); (.Net)

引数：

pageNo：表示ページ番号(1 オリジン)

hdc：Window デバイスコンテキスト

dispOrg：表示オフセット（デバイス単位。例：デバイス解像度 600 dpi の場合、100 ドットは

デバイス上で 100/600 inch = 1/6 inch = 25.4/6 mm の計算になります）

scale：表示倍率(1.0f == 100%)

drawBg：true バックグラウンドも描画

scaleH：水平方向表示倍率(1.0f == 100%)

scaleV：垂直方向表示倍率(1.0f == 100%)

drawResult：true 検索結果を表示する

解説：

26

表示後スレッドを作成し、ページ読み込み処理を開始します。

印刷だけの目的では、スレッドは作成されません。

7.2.22. リ モ ー ト デ ス ク ト ッ プ 表 示 モ ー ド の 設 定

void setRemoteDesktopDisplayMode(bool remote);

property bool RemoteDesktopDisplayMode (.Net)

引数：

remote：true を指定するとリモートデスクトップ用の表示を行う

解説：

リモートデスクトップでは GdiPlus で直接表示すると、きれいな描画を得られません。リモートデ

スクトップの場合、ビットマップを作成し、ディスプレイに転送することで、欠けることのない表
示を行います。

既定値はリモートデスクトップ環境では true に設定されています。それ以外は false です。

drawPage()にディスプレイのデバイスコンテキストが指定された場合処理します。

その他のデバイスコンテキストには適用されません。

7.2.23. リ モ ー ト デ ス ク ト ッ プ 表 示 モ ー ド か 問 い 合 わ せ る

bool isRemoteDesktopDisplayMode() const;

property bool RemoteDesktopDisplayMode (.Net)

戻り値：

リモートデスクトップ表示モードなら true

7.2.24. バ ッ フ ァ 表 示 モ ー ド の 設 定

void setBufferDisplayMode(bool buffer);

property bool BufferDisplayMode (.Net)

引数：

buffer：true を指定するとバッファ表示を行う

解説：

表示イメージをビットマップにコピーし、再表示のときビットマップイメージを使います。

27

表示する領域が単純な矩形の場合にビットマップを作成します。他のウインドウが上にある場合は

作成できません。縦スクロールが起きた場合はビットマップもスクロールしイメージを追加処理し
ます。横スクロールが起きるとビットマップは無効になります。

ビットマップはページ毎に作成します。表示しなくなったページのビットマップは破棄されます。

既定値は true です。

drawPage()にディスプレイのデバイスコンテキストが指定された場合処理します。その他のデバイ
スコンテキストには適用されません。

リモートデスクトップ表示のときも有効です。

7.2.25. バ ッ フ ァ 表 示 モ ー ド か 問 い 合 わ せ る

bool isBufferDisplayMode() const;

property bool BufferDisplayMode (.Net)

戻り値：

バッファ表示モードなら true

7.2.26. 表 示 バ ッ フ ァ の 削 除

void clearDisplayBuffer(HWND hWnd, int pageNo);

void ClearDisplayBuffer(IntPtr hWnd, int pageNo); (.Net)

引数：

hWnd：削除するウインドウ。NULL なら全てのウインドウ

pageNo：削除するページ。０なら全てのページ

解説：

上位アプリケーションで背景を描画し、背景を変更した場合などに呼び出します。

保存しているビットマップを無効化します。

7.2.27. ス ム ー ジ ン グ が 利 用 で き る か 問 い 合 わ せ る

static bool isSmoothingAvailable();

property bool IsSmoothingAvailable (.Net)

戻り値：

スムージングが可能なら true

28

解説：

PDFViewerSDK では Gdiplus を利用してスムージング表示を行います。

7.2.28. ス ム ー ジ ン グ の 設 定

bool setSmoothing(bool text, bool lineart, bool image);

void SetSmoothing(bool text, bool lineart, bool image); (.Net)

引数：

text：文字のスムージング(AntiAlias)を行う

lineart：線画のスムージングを行う

image：イメージのスムージングを行う

戻り値：

再表示が必要なら true

解説：

GDI/GDI+の場合に有効です。設定が無い場合のデフォルトは全て true です。

変更はいつでも行えます。設定変更し、再表示してください。

isSmoothingAvailable()が false の場合は無効です。

V3.0 から表示だけでなく、印刷、イメージ作成にも有効になりました。

7.2.29. ス ム ー ジ ン グ 設 定 の 取 得

void getSmoothing(bool& text, bool& lineart, bool& image);

void GetSmoothing(out bool text, out bol lineart, out bol image); (.Net)

引数：

text：文字のスムージング(AntiAlias)設定

lineart：線画のスムージング設定

image：イメージのスムージング設定

解説：

現在のスムージング設定を取得します。

7.2.30. 文 字 表 示 の 問 い 合 わ せ

29

bool isCharacterGDI() const;

property bool CharacterGDI (.Net)

戻り値：

文字で表示なら true 埋め込まれたフォントで表示する場合は false

7.2.31. 文 字 表 示 の 設 定

void setCharacterGDI(bool character);

property bool CharacterGDI (.Net)

引数：

character：文字で表示する場合 true 埋め込まれたフォントで表示する場合は false

解説：

文字にフォントが埋め込まれている場合、文字で表示するか埋め込まれたフォントで表示するかを
選択できます。

フォントによってはライセンスのため正しく表示できない場合があります。フォントの表示が正し
くない場合、文字で表示するように設定します。

文字（コード）が無い場合は埋め込まれたフォントで表示します。

既定値は false です。

7.2.32. Direct2D を 使 用 す る か

bool isDirect2D() const;

property bool Direct2D (.Net)

戻り値：

Direct2D を使用する場合は true 使用しない場合は false

7.2.33. Direct2D 設 定

void setDirect2D(bool direct2D);

property bool Direct2D (.Net)

引数：

Direct2D を使用する場合は true 使用しない場合は false

解説：

30

 表示、画像出力に Direct2D を使用します。

 true の場合でも、印刷には Direct2D は使用されません。

7.2.34. 注 釈 表 示 の 問 い 合 わ せ

bool getShowAnnotation() const;

property bool ShowAnnotation (.Net)

戻り値：

注釈を表示する場合は true 注釈を表示しない場合は false

7.2.35. 注 釈 表 示 の 設 定

void setShowAnnotation(bool show);

property bool ShowAnnotation (.Net)

引数：

show：注釈を表示する場合は true 注釈を表示しない場合は false

解説：

外観ストリームを持つ注釈について、注釈の外観を表示するかを設定します。

外観ストリームを持たない注釈は設定値を true にしても表示されません。

PDF 表示や画像出力の場合には、注釈フラグの Hidden、NoView フラグが考慮されます。

印刷の場合には Hidden、Print フラグが考慮されます。

既定値は false です。

7.2.36. 高 速 プ レ ビ ュ ー モ ー ド か

bool getFastPreviewMode() const;

property bool FastPreviewMode (.Net)

戻り値：

高速プレビューモードの場合は true そうでない場合は false

7.2.37. 高 速 プ レ ビ ュ ー モ ー ド 設 定

31

void setFastPreviewMode(bool preview);

property bool FastPreviewMode (.Net)

引数：

高速プレビューモードを使用する場合は true 使用しない場合は false

解説：

高速プレビューモードは、レンダリングは低品質ですが通常よりも高速にレンダリングするモード

です。高速プレビューモードの設定は PDF をオープンする前に行ってください。オープン後の呼
び出しは可能ですが、設定は反映されません。

制限事項：

・ 時間のかかる処理を省くことで通常のモードよりは高速にレンダリングしますが、レンダリング
結果の正確性は保証されません。

・ レンダリング結果は改訂版を含むバージョン間で同一になることは保証されません。

・ 現時点では通常のモードと大きな速度の差異はありません。

7.2.38. ブ レ ン ド モ ー ド 無 効 か

bool getDisableBlend() const; (.Net 未対応)

戻り値：

ブレンドモード無効の場合は true そうでない場合は false

7.2.39. ブ レ ン ド モ ー ド 無 効 設 定

void setDisableBlend (bool disableBlend); (.Net 未対応)

引数：

ブレンドモードを無効にする場合は true 有効にする場合は false

解説：

setDirect2D(false)のして GDI/GDI++を使用している場合に、表示や印刷の高速化のためにブレン

ドモードのレンダリング処理を無効にします。表示／印刷／画像ファイル出力の場合が対象です。

setDirect2D(true)として Direct2D を使用する場合は、表示／画像ファイル出力にはこの設定は反

映されません。この場合であっても印刷については、GDI/GDI++が使用されますので、ブレンドモ
ード無効設定の対象になります。

制限事項：

32

・ ブレンドモードが無効の場合はブレンドモードが指定された描画領域は正しく描画されません。

7.2.40. ウ ォ ー タ マ ー ク テ キ ス ト 設 定

void setShowAnnotation(bool show);

property String WatermarkText (.Net)

引数：

text：ウォータマーク文字列

解説：

ウォータマークとして出力する文字列を設定します。’\n’で改行し複数行の文字列を設定することも
できます。

7.2.41. ウ ォ ー タ マ ー ク テ キ ス ト 取 得

void setWatermarkText(const wchar_t* text);

property String WatermarkText (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数

buffer が NULL の場合は必要なバッファの文字数を返す

7.2.42. ウ ォ ー タ マ ー ク フ ォ ン ト フ ァ ミ リ 設 定

void setWatermarkFontFamily(const wchar_t* family);

property String WatermarkFontFamily (.Net)

引数：

family：ウォータマーク表示フォント名

7.2.43. ウ ォ ー タ マ ー ク フ ォ ン ト フ ァ ミ リ 取 得

33

int getWatermarkFontFamily(wchar_t* buffer, int size) const;

property String WatermarkFontFamily (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数

buffer が NULL の場合は必要なバッファの文字数を返す

7.2.44. ウ ォ ー タ マ ー ク フ ォ ン ト ウ エ イ ト 設 定

void setWatermarkFontWeight(const wchar_t* weight);

property String WatermarkFontWeight (.Net)

引数：

weight：ウォータマークフォントウエイト

解説：

”700”、”bold”などを設定します。

7.2.45. ウ ォ ー タ マ ー ク フ ォ ン ト ウ エ イ ト 取 得

int getWatermarkFontWeight(wchar_t* buffer, int size) const;

property String WatermarkFontWeight (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.46. ウ ォ ー タ マ ー ク フ ォ ン ト ス タ イ ル 設 定

void setWatermarkFontStyle(const wchar_t* style);

34

property String WatermarkFontStyle (.Net)

引数：

style：ウォータマーク表示フォントスタイル

解説：

”italic”を設定します。

7.2.47. ウ ォ ー タ マ ー ク フ ォ ン ト ス タ イ ル 取 得

int getWatermarkFontStyle(wchar_t* buffer, int size) const;

property String WatermarkFontStyle (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.48. ウ ォ ー タ マ ー ク 不 透 明 度 設 定

void setWatermarkOpacity(const wchar_t* opacity);

property String WatermarkOpacity (.Net)

引数：

opacity：ウォータマーク不透明度

解説：

”0.3”,”50%”などの不透明度を設定します。

7.2.49. ウ ォ ー タ マ ー ク 不 透 明 度 取 得

int getWatermarkOpacity(wchar_t* buffer, int size) const;

property String WatermarkOpacity (.Net)

引数：

buffer：文字列バッファ

35

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。Buffer が NULL の場合は必要なバッファの文字数を返す （C++)

取得した文字列 （.NET）

7.2.50. 印 刷 開 始

bool startPrint(HDC hdc, const DEVMODEW* devmode, const DOCINFOW* docInfo,

bool paperSelect = true, bool scaling = false) const;

bool StartPrint(IntPtr hdc, IntPtr devmode, IntPtr docInfo,

bool paperSelect); (.Net)

bool StartPrint(IntPtr hdc, IntPtr devmode, IntPtr docInfo,

bool paperSelect, bool scaling); (.Net)

引数：

hdc：プリンタデバイスコンテキスト

devmode：DEVMODE 構造体

docinfo：DOCINFO 構造体

paperSelect：true PDF のページに合わせて用紙を自動で選択する

 false DEVMODE 構造体に設定された用紙サイズを使用する

scaling：true ページを用紙に合わせる

戻り値：

true ::StartDoc()に成功した。

解説：

::StartDoc()を呼び出します。成功した場合は、必ず endPrint()または abortPrint()を呼び出してく
ださい

7.2.51. 印 刷 終 了

void endPrint() const;

void EndPrint(void); (.Net)

解説：

36

::EndDoc()を呼び出し印刷を終了します

7.2.52. 印 刷 中 止

void abortPrint() const;

void AbortPrint(void); (.Net)

解説：

::AbortDoc()を呼び出し印刷を中止します

7.2.53. ペ ー ジ の 印 刷

void printPage(int pageNo, bool printMark) const;

void PrintPage(int pageNo, bool printMark); (.Net)

引数：

pageNo：印刷するページ番号(1 オリジン)

printMark：検索結果を印刷に反映する

解説：

::StartPage()から::EndPage()の処理を行います。

印刷を行うには startPrint()を呼び出し成功したならば、印刷したいページを指定し printPage()を
繰り返し呼び出します。最後に endPage()で終了します。

サンプルプログラムも参照してください。

7.2.54. 印 刷 開 始 （ 拡 張 ）

bool startPrintExt(HDC hdc, const DEVMODEW* devmode, const DOCINFOW* docInfo,

bool paperSelect = true, bool fit = false, float scale = 1.0f,

 PAPERALIGNH halign = PALIGNH_CENTER,

PAPERALIGNV valign = PALIGNV_CENTER) const;

bool StartPrintExt(IntPtr hdc, IntPtr devmode, IntPtr docInfo,

bool paperSelect, bool fit, float scale,

PARENALIGNH halign, PARENALIGNV valign); (.Net)

37

bool startPrintExt2(HDC hdc, const DEVMODEW* devmode, const DOCINFOW* docInfo,

bool paperSelect = true,

PAGESCALING pagescaling = PAGESCALING_NONE, float scale = 1.0f,

 PAPERALIGNH halign = PALIGNH_CENTER,

PAPERALIGNV valign = PALIGNV_CENTER) const;

bool StartPrintExt2(IntPtr hdc, IntPtr devmode, IntPtr docInfo,

bool paperSelect, PAGESCALING pagescaling, float scale,

PARENALIGNH halign, PARENALIGNV valign); (.Net)

引数：

hdc：プリンタデバイスコンテキスト

devmode：DEVMODE 構造体

docinfo：DOCINFO 構造体

paperSelect：true PDF のページに合わせて用紙を自動で選択する

 false DEVMODE 構造体に設定された用紙サイズを使用する

fit：true ページを用紙に合わせる

scale：スケーリング倍率（fit の時は無効）

halign：水平配置

 enum PAPERALIGNH {

 PALIGNH_LEFT, // 左揃え

 PALIGNH_CENTER, // 中央揃え

 PALIGNH_RIGHT // 右揃え

 };

valign：垂直配置

 enum PAPERALIGNV {

 PALIGNV_TOP, // 上揃え

 PALIGNV_CENTER, // 中央揃え

 PALIGNV_BOTTOM // 下揃え

 };

pagescaling：ページの拡大／縮小

38

 enum PAGESCALING {

 PAGESCALING_NONE, // なし

 PAGESCALING_FIT, // 用紙に合わせる

 PAGESCALING_SHRINK // 大きいページを縮小

 };

戻り値：

true ::StartDoc()に成功した。

解説：

::StartDoc()を呼び出します。startPrint()を参照してください。

アプリケーションが用紙を選択する場合 paperSelect=false とします。SDK は用紙方向のみを設定
します。

PDF を用紙の印字領域に合わせて印刷する場合 fit=true とします。

scale を指定し用紙をはみ出す場合も halign,valign は有効です。左上、中央、右下を合わせること
ができます。

7.2.55. GdiPlus で イ メ ー ジ を 操 作 す る か 問 い 合 わ せ

bool isGdiPlusRasterOperation() const;

property bool GdiPlusRasterOperation (.Net)

戻り値：

画像出力においてイメージの変換、縮小化に GdiPlus を使用する場合 true

7.2.56. GdiPlus で イ メ ー ジ を 操 作 す る 設 定

void setGdiPlusRasterOperation(bool bUse) const;

property bool GdiPlusRasterOperation (.Net)

戻り値：

bUse：画像出力においてイメージの変換、縮小化に GdiPlus を使用する場合 true。

既定値は false です。

7.2.57. BMP の 作 成

bool makeBmpPage(int pageNo, int dpi, const wchar_t* scale, int height,

39

IMAGE_COLOR color, const RECT& imageRect, std::ostream& stream, bool printMark)
const;

 bool MakeBmpPage(int pageNo, int dpi, String scale, int height, IMAGE_COLOR color,

AvsRect imageRect, Stream stream, bool printMark);

bool makeBmpPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, const RECT& imageRect, const wchar_t* fileName, bool printMark)
const;

bool MakeBmpPage(int pageNo, int dpi, String scale, int height, IMAGE_COLOR color,

AvsRect imageRect, String fileName, bool printMark); (.Net)

bool makeBmpPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, const RECT& imageRect, IStreamPtr stream, bool printMark)

const;

※上記以外に、引数を省略した関数が利用できます

引数：

pageNo：BMP を作成するページ番号(1 オリジン) ※必須

dpi：スケーリング時の DPI 値(1 以上、1440 以下) ※必須。

1440dpi を超える場合 1440dpi で処理します。

scale：出力時のスケール文字列。100%以下、”1”==”100%”,”100px”は幅の指定 ※必須

height：出力イメージの最大高さ(Pixel) 、0 は高さ指定なし。※オプション（省略時 0）

 dpi と scale から決定された高さが指定値を超える場合、指定値で出力します。

その場合の幅はページのアスペクト比から計算されます。

color：色数 ※省略時 IMAGECOLOR_COLOR

 enum IMAGE_COLOR {

 IMAGECOLOR_COLOR, // フルカラー

 IMAGECOLOR_256COLOR, // 256色カラー

 IMAGECOLOR_GRAYSCALE, // グレースケール

 IMAGECOLOR_MONOCHROME, // モノクローム

 IMAGECOLOR_BLACK // テキスト、線画のハーフトーンなし

40

 };

imageRect：イメージを作成するページ内の領域。空の矩形はページ全体

※省略時、空の矩形（ページ全体）

stream：BMP を出力するストリーム

printMark：検索結果をイメージに反映する ※必須

fileName：出力ファイル名

戻り値：

ファイルがオープンできない、出力に失敗した場合 false

注意：

std:ostream インタフェースは SDK と同じバージョンのコンパイラのみ利用できます。

7.2.58. JPEG の 作 成

bool makeJpegPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, int quality, bool progressive, const RECT& imageRect,

std::ostream& stream, bool printMark) const;

bool MakeJpegPage(int pageNo, int dpi, String scale, int height, IMAGE_COLOR color,

int quality, bool progressive, AvsRect imageRect, Stream stream, bool printMark);

(.Net)

bool makeJpegPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, int quality, bool progressive, const RECT& imageRect,

const wchar_t* fileName, bool printMark) const;

bool MakeJpegPage(int pageNo, int dpi, String scale, int height, IMAGE_COLOR color,

int quality, bool progressive, AvsRect imageRect, String fileName, bool printMark);

(.Net)

bool makeJpegPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, int quality, bool progressive, const RECT& imageRect,

IStreamPtr stream, bool printMark) const;

41

※上記以外に、引数を省略した関数が利用できます

引数：

pageNo：JPEG を作成するページ番号(1 オリジン) ※必須

dpi：スケーリング時の DPI 値(1 以上、1440 以下) ※必須。1440dpi を超える場合 1440dpi で処理
します。

scale：出力時のスケール文字列。100%以下、”1”==”100%”,”100px”は幅の指定 ※必須

height：出力イメージの最大高さ(Pixel) 、0 は高さ指定なし。※オプション（省略時 0）

 dpi と scale から決定された高さが指定値を超える場合、指定値で出力します。

その場合の幅はページのアスペクト比から計算されます。

※省略時 0

color：色数 ※省略時 IMAGECOLOR_COLOR

 enum IMAGE_COLOR {

 IMAGECOLOR_COLOR, // フルカラー

 IMAGECOLOR_256COLOR, // 256色カラー

 IMAGECOLOR_GRAYSCALE, // グレースケール

 IMAGECOLOR_MONOCHROME, // モノクローム

 IMAGECOLOR_BLACK // テキスト、線画のハーフトーンなし

 };

quality：JPEG 変換品質 ※省略時および 1〜100 以外の場合は 80 として処理します。

progressive：Progressive JPEG を作成する ※省略時 false

imageRect：イメージを作成するページ内の領域。空の矩形はページ全体 ※省略時、空の矩形
（ページ全体）

stream：JPEG を出力するストリーム

printMark：検索結果をイメージに反映する ※必須

fileName：出力ファイル名

戻り値：

ファイルがオープンできない、出力に失敗した場合 false

注意：

std:ostream インタフェースは SDK と同じバージョンのコンパイラのみ利用できます。

IMAGECOLOR_MONOCHROME、IMAGECOLOR_BLACK はサポートされません。

42

指定しても IMAGECOLOR_GRAYSCALE となります。

7.2.59. PNG の 作 成

bool makePngPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, bool interlace, const RECT& imageRect, std::ostream& stream,

bool printMark) const;

bool MakePngPage(int pageNo, int dpi, String scale, int height, IMAGE_COLOR color,

bool interlace, AvsRect imageRect, Stream stream, bool printMark); (.Net)

bool makePngPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, bool interlace, const RECT& imageRect,

const wchar_t* fileName, bool printMark) const;

bool MakePngPage(int pageNo, int dpi, String scale, int height, IMAGE_COLOR color,

bool interlace, AvsRect imageRect, String fileName, bool printMark); (.Net)

bool makePngPage(int pageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, bool interlace, const RECT& imageRect, IStreamPtr stream,

bool printMark) const;

※上記以外に、引数を省略した関数が利用できます

引数：

pageNo：PNG を作成するページ番号(1 オリジン) ※必須

dpi：スケーリング時の DPI 値(1 以上、1440 以下) ※必須。1440dpi を超える場合 1440dpi で処
理します。

scale：出力時のスケール文字列。100%以下、”1”==”100%”,”100px”は幅の指定 ※必須

height：出力イメージの最大高さ(Pixel) 、0 は高さ指定なし。※オプション（省略時 0）

 dpi と scale から決定された高さが指定値を超える場合、指定値で出力します。

その場合の幅はページのアスペクト比から計算されます。

color：色数 ※省略時 IMAGECOLOR_COLOR

enum IMAGE_COLOR {

43

 IMAGECOLOR_COLOR, // フルカラー

 IMAGECOLOR_256COLOR, // 256色カラー

 IMAGECOLOR_GRAYSCALE, // グレースケール

 IMAGECOLOR_MONOCHROME, // モノクローム

 IMAGECOLOR_BLACK // テキスト、線画のハーフトーンなし

 };

interlace：Interlace PNG を作成する ※省略時 false

imageRect：イメージを作成するページ内の領域。空の矩形はページ全体 ※省略時、空の矩形（ペ
ージ全体）

stream：PNG を出力するストリーム

printMark：検索結果をイメージに反映する ※必須

fileName：出力ファイル名

戻り値：

ファイルがオープンできない、出力に失敗した場合 false

注意：

std:ostream インタフェースは SDK と同じバージョンのコンパイラのみ利用できます。

7.2.60. TIFF の 作 成

bool makeTiffPage(int startPageNo, int endPageNo, int dpi, const wchar_t* scale,

int height, IMAGE_COLOR color, const RECT& imageRect, std::ostream& stream,

TIFFCOMPRESSION comp, int quality, bool printMark) const;

bool MakeTiffPage(int startPageNo, int endPageNo, int dpi, String scale, int height,

AvsRect imageRect, Stream stream, bool printMark);

bool makeTiffPage(int startPageNo, int endPageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, const RECT& imageRect, const wchar_t* fileName,

TIFFCOMPRESSION comp, int quality, bool printMark) const;

bool MakeTiffPage(int startPageNo, int endPageNo, int dpi, String scale, int height,

IMAGE_COLOR color, AvsRect imageRect, String fileName, TIFFCOMPRESSION comp,

int quality, bool printMark); (.Net)

44

bool makeTiffPage(int startPageNo, int endPageNo, int dpi, const wchar_t* scale, int height,

IMAGE_COLOR color, const RECT& imageRect, IStreamPtr stream,

TIFFCOMPRESSION comp, int quality, bool printMark) const;

※上記以外に、引数を省略した関数が利用できます

引数：

startPageNo：TIFF を作成する開始ページ番号(1 オリジン) ※必須

endPageNo：終了ページ番号 ※必須

dpi：スケーリング時の DPI 値(1 以上、1440 以下) ※必須。1440dpi を超える場合 1440dpi で処
理します。

scale：出力時のスケール文字列。100%以下、”1”==”100%”,”100px”は幅の指定 ※必須

height：出力イメージの最大高さ(Pixel) 、0 は高さ指定なし。※オプション（省略時 0）

 dpi と scale から決定された高さが指定値を超える場合、指定値で出力します。

その場合の幅はページのアスペクト比から計算されます。

color：色数 ※省略時 IMAGECOLOR_COLOR

enum IMAGE_COLOR {

 IMAGECOLOR_COLOR, // フルカラー

 IMAGECOLOR_256COLOR, // 256色カラー

 IMAGECOLOR_GRAYSCALE, // グレースケール

 IMAGECOLOR_MONOCHROME, // モノクローム

 IMAGECOLOR_BLACK // テキスト、線画のハーフトーンなし

 };

imageRect：イメージを作成するページ内の領域。空の矩形はページ全体 ※必須

stream：TIFF を出力するストリーム

printMark：検索結果をイメージに反映する ※必須

fileName：出力ファイル名

comp：圧縮方法の指定 ※省略時、圧縮なし

 enum TIFFCOMPRESSION {

TIFFCOMP_None = 0, // 圧縮なし

TIFFCOMP_LZW, // LZW圧縮

45

TIFFCOMP_DCT, // JPEG圧縮

TIFFCOMP_Flate, // Flate圧縮

TIFFCOMP_RunLength, // ランレングス

TIFFCOMP_CCITT3, // CCITT G3圧縮

TIFFCOMP_CCITT4 // CCITT G4圧縮

};

quality：JPEG 変換品質(圧縮方法が DCT(JPEG)の場合有効)

※省略時および 1〜100 以外の場合は 80 として処理します。

戻り値：

ファイルがオープンできない、出力に失敗した場合 false

注意：

std:ostream インタフェースは SDK と同じバージョンのコンパイラのみ利用できます。

7.2.61. 検 索 ペ ー ジ 指 定

void setCurrentPage(int pageNo) const;

void SetCurrentPage(int pageNo); (.Net)

引数：

pageNo：検索ページ番号（1 オリジン）

解説：

searchText での検索位置を pageNo の先頭に設定します。

ページ数より大きな数を指定すると最後のページの最終位置になります。

7.2.62. 検 索 ペ ー ジ 数 の 設 定

void setSearchPageCount(int count) const;

void SetSearchPageCount(int count); (.Net)

引数：

count：検索ページ数

解説：

searchText,searchAll で検索するページ数を設定します。

46

０は未設定、ページ終了まで検索します。

7.2.63. 文 字 列 検 索

bool searchText(const wchar_t* str, bool ignoreCase, bool ignoreWidth, bool reverse) const;

bool SearchText(String str, bool ignoreCase, bool ignoreWidth, bool reverse); (.Net)

引数：

str：検索文字列

ignoreCase：true 大文字小文字を区別しない

ignoreWidth：true 全角半角を区別しない

reverse：true 上検索

戻り値：

true 検索文字列が見つかった

解説：

検索文字列が無い場合、検索状態は変更されません

7.2.64. 全 検 索

bool searchAll(const wchar_t* str, bool ignoreCase, bool ignoreWidth, bool reverse) const;

bool SearchAll(String str, bool ignoreCase, bool ignoreWidth, bool reverse); (.Net)

引数：

str：検索文字列

ignoreCase：true 大文字小文字を区別しない

ignoreWidth：true 全角半角を区別しない

reverse：true 上検索 (V5.0MR1 以降)

戻り値：

true 検索文字列が見つかった

解説：

文書全体から文字列を検索します。複数検索される場合もあります。

検索文字列が無い場合、検索状態は変更されません

7.2.65. 次 検 索

47

bool searchNext(bool reverse) const;

bool SearchNext(bool reverse); (.Net)

引数：

reverse：true 上検索

戻り値：

true 検索文字列が見つかった

解説：

文字列検索の場合は searchText()で検索した位置から次の検索を行います

全検索の場合は検索済み文字列の次の要素へ移動します

7.2.66. 検 索 状 態 解 除

bool clearSearch() const;

bool ClearSearch(void); (.Net)

戻り値：

true 検索状態を解除した。再表示が必要

7.2.67. マ ー ク 解 除

void clearCurrentMark() const;

void ClearCurrentMark(void); (.Net)

解説：

全検索した現在位置のマークを解除します。

7.2.68. 検 索 位 置 取 得

int getSearchPosition(RECT& rect, bool bBox=false) const;

int GetSearchPosition(out AvsRect rect, bool bBox); (.Net)

int getSearchPositionRegion(HRGN& hRgn) const;

int GetSearchPositionRegion(out AvsRegion hRgn); (.Net)

引数：

48

rect：検索文字列矩形を受け取る RECT 構造体

bBox：true 検索文字列全体の矩形を得る

hRgn：検索文字列リージョン

戻り値：

検索文字列があるページ番号（１オリジン）。０は検索状態ではない

解説：

検索状態にある場合、これらの関数で現在の位置（検索でハイライトされた領域）を取得できま

す。複数行にまたがる文字列にヒットした場合はこの領域は単純な矩形にならず複数の矩形を合成
した領域になります。このような場合、関数によって取得する情報が異なります。

getSearchPosition では取得する結果は矩形になります。

・ bBox が true の場合はハイライトされた領域全体を含む矩形を取得します。

・ bBox が false の場合は先頭の矩形検索位置の文字列の矩形を取得します。

また getSearchPositionRegion では、現在の位置は HRGN 型として得られます。検索結果の範囲

が複数行にまたがる場合、リージョンは複数の矩形を合成した領域です。取得した hRgn は呼び出
し側で DeleteObject()してください。

HRGN は Win32API に渡すことで描画など使用できます。HRGN や関連する API について [1]を

参照してください。HRGN を構成する個々の矩形は RGNDATA 構造体から取得することができま

す。[2] ただし、.NET/.NET Framework の場合は対応する API がありませんので P/Invoke など

を利用して Win32 API で RGNDATA を扱う必要があります。この場合、AvsRect の GetPointer()
メソッドで HRGN を取得することができます。

参考 URL

[1] https://learn.microsoft.com/en-us/windows/win32/gdi/regions

[2] https://learn.microsoft.com/en-us/windows/win32/api/wingdi/ns-wingdi-rgndata

7.2.69. ペ ー ジ の 検 索 結 果 取 得

HRGN getPageSearchRegion(int pageNo) const;

AvsRegion GetPageSearchRegion(int pageNo); (.Net)

引数：

pageNo：取得するページ

戻り値：

検索結果のリージョン

https://learn.microsoft.com/en-us/windows/win32/gdi/regions
https://learn.microsoft.com/en-us/windows/win32/api/wingdi/ns-wingdi-rgndata

49

解説：

全検索をしたときの指定ページの検索された文字列のリージョンを取得します。

リージョンは呼び出し側で DeleteObject()してください。

7.2.70. 検 索 状 態 か の 問 い 合 わ せ

bool isSearched() const;

property bool IsSearched (.Net) 読み取りのみ

戻り値：

true 検索状態（文字列検索、全検索）

7.2.71. 全 検 索 状 態 か の 問 い 合 わ せ

bool isSearchedAll() const;

property bool IsSearchedAll (.Net) 読み取りのみ

戻り値：

true 全検索状態

7.2.72. 全 検 索 で マ ー ク し た 個 数 を 得 る

int getMarkupCount() const;

property int MarkupCount (.Net) 読み取りのみ

戻り値：

全検索で見つかった個数

7.2.73. 反 転 色 の 設 定

void setSearchedColor(COLORREF selectText, COLORREF selectBack, COLORREF currentText,
COLORREF currentBack) const;

void SetSearchedColor(AvsColor selectText, AvsColor selectBack, AvsColor currentText, AvsColor
currentBack); (.Net)

引数：

selectText：検索した文字列の色

selectBack：検索した文字列の背景色

50

currentText：現在位置の文字列の色

currentBack：現在位置の文字列の背景色

7.2.74. 矩 形 内 テ キ ス ト の 取 得

int getTextInRect(int pageNo, const RECT* rect, wchar_t* buffer, int size) const;

String GetTextInRect(int pageNo, AvsRect rect); (.Net)

引数：

pageNo：指定矩形ページ番号（１オリジン）

rect：矩形、NULL の場合はページ全体

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。buffer が NULL の場合は必要なバッファの文字数を返す (C++)

取得した文字列 (.Net)

解説：

指定した矩形に完全に含まれるテキストを取得します。

getSearchPosition で取得した矩形を使う場合は、その矩形を 1TWIP 単位上下左右に拡げた矩形
を渡してください。

7.2.75. 全 選 択 設 定

bool setSelectAll(bool select) const;

bool SetSelectAll(bool select); (.Net)

引数：

select：全選択状態

戻り値：

以前の状態

7.2.76. 全 テ キ ス ト 取 得

int getAllText(wchar_t* buffer, int size) const;

51

String GetAllText(); (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字。buffer が NULL の場合は必要なバッファの文字数を返す (C++)

取得した文字列 (.Net)

解説：

全選択状態のテキストを取得します。

setSelectAll(true)に設定して取得します。

読み込み済みページまでのテキストのみ取得できます。

7.2.77. 矩 形 選 択 の 設 定

void setReverseTextRect(int pageNo, const RECT* rect,

COLORREF text=RGB(255,255,255), COLORREF back=RGB(0,0,0)) const;

void SetReverseTextRect(int pageNo, AvsRect rect, AvsColor text, AvsColor back); (.Net)

引数：

pageNo：矩形ページ番号

rect：矩形、NULL は解除

text：文字色

back：背景色

解説：

指定した矩形内の文字列を text,back の色で表示するよう設定します。

矩形内のテキストは getTextInRect()で取得することができます。

rect に NULL を指定すると設定を解除します。

表示の優先順位は、全選択状態＞矩形選択＞検索状態になります。

7.2.78. ペ ー ジ 回 転 の 取 得

int getPageRotation(int pageNo) const;

52

int GetPageRotation(int pageNo); (.Net)

引数：

pageNo：回転を取得するページ番号

戻り値：

ページの回転角度(0, 90, 180, 270)

7.2.79. ペ ー ジ 回 転 の 設 定

int setPageRotation(int pageNo, int rotation) const;

int SetPageRotation(int pageNo, int rotation); (.Net)

引数：

pageNo：回転を設定するページ番号

rotation：新しい回転角度(0, 90, 180, 270)

戻り値：

設定されたページの回転角度(0, 90, 180, 270)

解説：

回転を変更し再表示してください。ページの幅、高さは変更されます。

7.2.80. リ ン ク 注 釈 ヒ ッ ト テ ス ト

LINK_ACTION hitTestAnchor(int pageNo, const POINT& mousePos, RECT* anchorRect) const;

LINK_ACTION HitTestAnchor(int pageNo, AvsPoint mousePos, out AvsRect anchorRect); (.Net)

引数：

pageNo：ヒットテストを行うページ番号

mousePos：マウス位置

anchorRect：アンカー矩形を取得する RECT

戻り値：

マウス位置のリンク注釈アクション

 enum LINK_ACTION {

 ACTIONTYPE_None = 0, // アクションなし

 ACTIONTYPE_GoTo, // Gotoアクション

53

 ACTIONTYPE_GoToR, // GotoRアクション

 ACTIONTYPE_Launch, // Launchアクション

 ACTIONTYPE_URI // URIアクション

};

7.2.81. リ ン ク 注 釈 内 部 矩 形 取 得

int getInternalTarget(RECT* targetRect) const;

int GetInternalTarget(out AvsRect% targetRect);

引数：

targetRect：飛び先の矩形を取得する RECT

戻り値：

飛び先のページ番号（０は無効）

解説：

前回の hitTestAnchor()で得られたリンク注釈が PDF 内(GoTo)の場合、その飛び先を取得します。

7.2.82. リ ン ク 注 釈 外 部 フ ァ イ ル 名 取 得

int getExternalUri(wchar_t* buffer, int size) const;

property String ExternalUri (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数

buffer が NULL の場合は必要なバッファの文字数を返す

解説：

前回の hitTestAnchor()で得られたリンク注釈が外部ファイル(GoToR,Launch,URI)の場合、その飛
び先の URI を取得します。

GoToR,Launch でファイルが相対指定で、PDF の open()がファイル名指定の場合、開いている
PDF の相対ファイルとして実際のファイル名を返します。

54

URI の相対指定は PDF の URI 辞書の/Base の指定があればそこからの相対として実際の URI を返
します。

簡単なリンク注釈の使い方がサンプルプログラムに実装してあります。参照してください。

7.2.83. デ フ ォ ル ト フ ォ ン ト の 設 定

void setGenericFont(const wchar_t* script, const wchar_t* genericFont,

const wchar_t* fontname);

void SetGenericFont(String script, String genericFont, String fontname); (.Net)

引数：

script：文字のスクリプト。日本は”ja”

genericFont：generic フォント名。”serif”, “sans-serif”

fontname：フォント名

解説：

PDF にフォントファイルがなく指定されているフォント名が探せない場合、スクリプトごと
generic フォント名に登録されているフォントを使用します。

generic フォント名は PDF フォントデスクリプタの Flags に Serif が指定されている場合”sefif”、指
定されていなければ”sans-serif”になります。

デフォルトでは日本語の”serif”は”ＭＳ 明朝”です。これを”ＭＳ Ｐ明朝”に指定する場合は

setGenericFont(“ja”, “serif”, “ＭＳ Ｐ明朝”);

とします。

呼び出しはオープンの前に行ってください。

7.2.84. 読 み 込 み ペ ー ジ 数 の 設 定

void setLoadPageCount(int count);

property int LoadPageCount (.Net)

引数：

count：メモリに読み込むページ数。初期値２００。値範囲：１０以上、上限なし。

解説：

メモリに読み込むページ数を設定します。

呼び出しはオープンの前に行ってください。

55

設定したページ数より PDF のページ数が多いと、設定したページ数までメモリに持ちます。

ファイル名でオープンした場合はファイルがオープンしたままになります。

オープンしたままにしたくない場合はストリームでオープンしてください。

7.2.85. 読 み 込 み メ モ リ 上 限 の 設 定

void setLoadMemoryLimit(DWORD limit);

property UInt32 LoadMemoryLimit

引数：

limit：プロセスヒープメモリの上限。（単位 Byte、KB 未満切捨て）

 初期値５００ＭＢ。値範囲：0 以上、上限なし。

解説：

プロセスのヒープメモリの上限を設定します。

呼び出しはオープンの前に行ってください。

プロセスのヒープメモリが設定した値を超えると、読み込みスレッドを打ち切り、そのときのペー
ジ数までメモリに保持します。

ファイル名でオープンした場合はファイルがオープンしたままになります。

オープンしたままにしたくない場合はストリームでオープンしてください。

ストリームでオープンする場合、内部のメモリストリームにコピーしますので、ファイルサイズ分

のメモリが必要となります。ファイル名でオープンする場合は、ストリームへのコピーは行いませ
んのでメモリ消費が少なくなります。

7.2.86. テ キ ス ト 位 置 の 取 得

int getPageTextPosition(int pageNo, const POINT& mousePos) const;

int GetPageTextPosition(int pageNo, AvsPoint mousePos); (.Net)

引数：

pageNo：位置を取得するページ番号

mousePos：マウス位置

戻り値：

テキスト位置

56

解説：

マウス位置のテキスト位置を取得します。

サンプルでは OnLButtonDown()で選択開始、終了位置を取得しています。

OnMouseMove()で終了位置を取得、更新し、再描画範囲を設定します。

7.2.87. テ キ ス ト 範 囲 の 取 得

HRGN getPageTextRegion(int pageNo, int start, int end) const;

AvsRegion GetPageTextRegion(int pageNo, int start, int end); (.Net)

HRGN getPageTextRegion(int pageNo, int start, int end, bool encodeV) const;

AvsRegion GetPageTextRegion(int pageNo, int start, int end, bool encodeV); (.Net)

引数：

pageNo：範囲を取得するページ番号

start：選択開始位置

end：選択終了位置

encodeV：true の場合は縦書きテキスト。false では縦書き以外

戻り値：

開始から終了までのテキストのリージョン

解説：

取得した HRGN は呼び出し側で DeleteObject()してください。

ページをまたがる範囲の場合（１ページ目 start から２ページ目 end など）、テキスト位置がペー

ジの先頭の場合は TEXTPOSITION_FIRST を、ページ最後の場合は TEXTPOSITION_LAST を指定
してください。

getPageTextRegion(1, start, TEXTPOSITION_LAST); // １ページ目

getPageTextRegion(2, TEXTPOSITION_FIRST, end); // ２ページ目

7.2.88. 位 置 指 定 テ キ ス ト 取 得

int getPageTextString(int pageNo, o, int start, int end, wchar_t* buffer, int size) const;

String GetPageTextString(int pageNo, int start, int end); (.Net)

引数：

pageNo：テキストのあるページ番号

57

start：選択開始位置

end：選択終了位置

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。buffer が NULL の場合は必要なバッファの文字数を返す

取得した文字列 (.Net)

7.2.89. 矩 形 内 テ キ ス ト 範 囲 の 取 得

HRGN getTextRegionInRect(int pageNo, const RECT* rect) const;

AvsRegion GetTextRegionInRect(int pageNo, AvsRect rect); (.Net)

HRGN getTextRegionInRect(int pageNo, const RECT* rect, bool encodeV) const;

AvsRegion GetTextRegionInRect(int pageNo, AvsRect rect, bool encodeV); (.Net)

引数：

pageNo：指定矩形ページ番号（１オリジン）

rect：矩形、NULL の場合はページ全体

encodeV：true の場合は縦書きテキスト。false では縦書き以外

戻り値：

矩形内テキストのリージョン

解説：

取得した HRGN は呼び出し側で DeleteObject()してください。

7.2.90. 矩 形 内 テ キ ス ト 情 報 の 取 得

int getTextInfoInRect(int pageNo, const RECT* rect, TextInfo* buffer, int size) const;

ArrayList GetTextInfoInRect(int pageNo, AvsRect rect); (.Net)

C++

 enum {

 TI_MAX_TEXT_LEN = 4,

58

 TI_MAX_FONTNAME_LEN = 128

 };

 enum {

 WM_f_isRtlOrBtt = 1 << 0,

 WM_f_isVerticalText = 1 << 1,

 WM_f_isBPDirLtrOrBtt = 1 << 2

 };

 enum WritingModeEnum {

 WM_lr_tb = 0,

 WM_rl_tb = WM_f_isRtlOrBtt,

 WM_tb_rl = WM_f_isVerticalText,

 WM_bt_rl = WM_f_isRtlOrBtt | WM_f_isVerticalText,

 WM_lr_bt = WM_f_isBPDirLtrOrBtt,

 WM_rl_bt = WM_f_isRtlOrBtt | WM_f_isBPDirLtrOrBtt,

 WM_tb_lr = WM_f_isVerticalText | WM_f_isBPDirLtrOrBtt,

 WM_bt_lr = WM_f_isRtlOrBtt | WM_f_isVerticalText | WM_f_isBPDirLtrOrBtt
 };

class TextInfo {

 public:

 wchar_t text[TI_MAX_TEXT_LEN];

 RECT rect;

 int baseline;

int fontSize;

wchar_t fontName[TI_MAX_FONTNAME_LEN];

bool isNewLine;

int writingMode;

bool isVertical;

};

.NET Framework /.NET (C#)

public enum AvsWritingMode {

 WM_lr_tb = 0,

59

 WM_rl_tb = 1, //WM_f_isRtlOrBtt,

 WM_tb_rl = 2, //WM_f_isVerticalText,

 WM_bt_rl = 3, //WM_f_isRtlOrBtt | WM_f_isVerticalText,

 WM_lr_bt = 4, //WM_f_isBPDirLtrOrBtt,

 WM_rl_bt = 5, //WM_f_isRtlOrBtt | WM_f_isBPDirLtrOrBtt,

 WM_tb_lr = 6, //WM_f_isVerticalText | WM_f_isBPDirLtrOrBtt,

 WM_bt_lr = 7, //WM_f_isRtlOrBtt | WM_f_isVerticalText | WM_f_isBPDirLtrOrBtt

}

public class AvsTextInfo {

 public String Text;

 public AvsRect Rect;

 public int Baseline;

 public int FontSize;

 public String FontName;

 public bool IsNewLine;

 public int PageNumber;

 public AvsWritingMode WritingMode;

 public bool IsVertical;

}

引数：

pageNo：指定矩形ページ番号（１オリジン）

rect：矩形、NULL の場合はページ全体

buffer: 取得したテキスト情報(TextInfo クラス)を格納する配列

size:バッファのサイズ

戻り値：

取得されたサイズ

buffer が NULL の場合は必要なバッファのサイズを返す

解説：

指定ページの指定された矩形内に完全に含まれる文字の情報を取得します。

60

・フォント名はベースフォント名を取得します。

・文字の矩形、ベースラインは論理座標におけるページの原点に対する位置になります。

・改行位置には、isNewLine=true である文字情報が含まれます。isNewLine=true の場合、

TextInfo のその他のメンバー変数は無効です。

・writingMode は文字列の方向です。以下の数値で表されます。方向は PDF Viewer API の座標

系における見かけ上の方向を表します。ページ回転も考慮されます。

 WM_lr_tb (0) 左から右

 WM_rl_tb (1) 右から左

 WM_tb_rl (2) 上から下

 WM_bt_rl (3) 下から上

 WM_lr_bt (4) 左から右（WM_lr_tb の上下反転）

 WM_rl_bt (5) 右から左（WM_rl_tb の上下反転）

 WM_tb_lr (6) 上から下（WM_tb_rl の左右反転）

 WM_bt_lr (7) 下から上（WM_bt_rl の左右反転）

・isVertical は内部の PDF のフォントが縦書き（tue）用か横書き（false）用かを表します。

必ずしも見かけ上の縦書きか横書きかとは一致しません。

制限事項：

・座標変換により文字に回転や歪み(skew)がある場合は正しい情報が取得できません。

・現在の実装では、テキストのベースラインに一定量変化があるときに改行と判定しています。
縦書きや斜めに傾いている場合には正しく機能しません。

・改行位置の判定は PDF 仕様では明確に既定されないため、弊社リーダーの実装依存の動作にな
ります。このため、他社のリーダーと同一にはなりません。

・座標変換に 0/90/180/270 度以外の回転がある場合は文字列の方向が正しく取得できません。

7.2.91. 位 置 指 定 テ キ ス ト 情 報 の 取 得

int getPageTextInfo(int pageNo, int start, int end, TextInfo* buffer, int size) const;

※本 API は C++ I/F のみです。

引数：

pageNo：指定矩形ページ番号（１オリジン）

start：選択開始位置

61

end：選択終了位置

buffer: 取得したテキスト情報(TextInfo クラス)を格納する配列

size:バッファのサイズ

戻り値：

取得されたサイズ

buffer が NULL の場合は必要なバッファのサイズを返す

解説：

指定ページの指定された範囲の文字の情報を取得します。

取得できる情報（AvsTextInfo）について、getTextInfoInRect メソッドの解説を参照ください。

制限事項：

getTextInfoInRect メソッドの制限事項を参照ください。

7.2.92. 矩 形 内 パ ス 情 報 の 取 得

int getPagePathInRect(int pageNo, const RECT* rect, PDFPath** list) const;

 enum PDFPathOp { // パス生成オペレータ

 PathOp_Unknown,

 PathOp_m,

 PathOp_l,

 PathOp_c,

 PathOp_v,

 PathOp_y,

 PathOp_h,

 PathOp_re

 };

 enum PDFPaintOp { // パスペイントオペレータ

 PaintOp_Unknown,

 PaintOp_S,

 PaintOp_s,

62

 PaintOp_f,

 PaintOp_F,

 PaintOp_f_,

 PaintOp_B,

 PaintOp_B_,

 PaintOp_b,

 PaintOp_b_,

 PaintOp_n,

 PaintOp_W,

 PaintOp_W_

 };

 class PDFSubPath { // sub path クラス

 public:

 int size; // subpath を構成する点の数

 POINT* points; // subpath を構成する点の配列

 PDFPathOp pathOp; // subpath のオペレータ

 };

 class PDFPath { // path クラス

 public:

 int size; // subpath の数

 PDFSubPath* subpaths; // subpath の配列

 PDFPaintOp paintOp; // パスペイントオペレータ

 int lineWidth; //

 };

 ※本 API は C++ I/F のみです。

引数：

pageNo：指定矩形ページ番号（１オリジン）

rect：矩形、NULL の場合はページ全体

path: 取得したパスを格納する配列へのポインタ

63

戻り値：

取得されたパスの個数

解説：

指定ページの指定された矩形内に完全に含まれるパスをすべて取得します。取得される

パスには実際に描画されるパスだけでなく、クリッピング用のパスなどすべてのパスが

含まれます。

パスがどのように描画されるかは、PDFPath クラスの paintOp メンバ変数のパスペイントオペ

レータ（enum PDFPaintOp 型）で判定してください。パスペイントオペレータの詳細は
ISO32000-2 の「8.5.3Path-Painting Operators」をご覧ください。

パスは複数のサブパス(PDFSubPath クラス)で構成されます。パスの構成については、
ISO32000-2 の「8.5.2Path Construction Operators」をご覧ください。

取得されるパス情報は API 側でメモリが割り当てられます。メモリの廃棄はアプリケーション
側で行ってください。

7.2.93. カ ラ ー プ ロ フ ァ イ ル の 設 定

void setOutputColorProfile(std::istream& outputRGBProfile);

void SetOutputColorProfile(Stream outputRGBProfile); (.Net)

void setRGBColorProfile(std::istream& readRGBProfile);

void SetRGBColorProfile(Stream readRGBProfile); (.Net)

void setGrayscaleColorProfile(std::istream& readGrayscaleProfile);

void SetGrayscaleColorProfile(Stream readGrayscaleProfile); (.Net)

void setCMYKColorProfile(std::istream& readCMYKProfile);

void SetCMYKColorProfile(Stream readCMYKProfile); (.Net)

void setOutputColorProfile(const wchar_t* outputRGBProfile);

void SetOutputColorProfile(String outputRGBProfile); (.Net)

64

void setRGBColorProfile(const wchar_t* readRGBProfile);

void SetRGBColorProfile(String readRGBProfile); (.Net)

void setGrayscaleColorProfile(const wchar_t* readGrayscaleProfile);

void SetGrayscaleColorProfile(String readGrayscaleProfile); (.Net)

void setCMYKColorProfile(const wchar_t* readCMYKProfile);

void SetCMYKColorProfile(String^ readCMYKProfile); (.Net)

引数：

outputRGBProfile：表示用 RGB カラープロファイル

readRGBProfile：PDF RGB カラープロファイル

readGrayscaleProfile：PDF GrayScale カラープロファイル

readCMYKProfile：PDF CMYK カラープロファイル

解説：

カラープロファイルの指定は openDocument()前に行ってください。

PDF ファイルをオープン後にプロファイルを指定した場合、次回のオープンまで反映されません。

7.2.94. エ ラ ー が あ る か

bool hasError() const;

property bool HasError (.Net) 読み取りのみ

引数：

戻り値：

true エラーがある

解説：

エラーは複数ある場合があります。エラーがある場合は getErrorMessage()で得られるメッセージ

を表示し、abandonError()または clearError()でエラーを廃棄してください。廃棄しない場合、エラ

ーが発生する度にエラーは蓄積されていきます。API 呼出が成功した場合でも致命的でないエラー
（警告）が発生する場合があります。

7.2.95. 致 命 的 エ ラ ー か

65

bool isFatalError() const;

property bool IsFatalError (.Net)

戻り値：

true エラーが致命的エラーである

解説：

蓄積された最初のエラーについて確認します。

7.2.96. エ ラ ー 番 号 の 取 得

unsigned short getErrorCode() const;

property unsigned short ErrorCode (.Net)

戻り値：

エラー番号

解説：

蓄積された最初のエラーのエラー番号を返します。

7.2.97. エ ラ ー メ ッ セ ー ジ の 取 得

int getErrorMessage(wchar_t* buffer, int size) const;

property String ErrorMessage (.Net)

引数：

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。buffer が NULL の場合は必要なバッファの文字数を返す (C++)

取得した文字列 (.Net)

解説：

蓄積された最初のエラーのエラーメッセージを取得します。

7.2.98. エ ラ ー の 廃 棄

void abandonError() const;

66

void AbandonError(void); (.Net)

解説：

蓄積されたエラーのうち、最初のエラーを一つ廃棄します

7.2.99. エ ラ ー の ク リ ア

void clearError() const;

void ClearError(void); (.Net)

解説：

エラーを全て廃棄します

67

7.2.100. ラ イ セ ン ス 情 報 の 取 得

static int getLicenseInfo(LicenseInfoType type, wchar_t* buffer, int size) const;

String GetLicenseInfo(AvsLicenseInfoType type)（.Net）

引数：

type：取得するライセンス情報の種別

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした文字数。buffer が NULL の場合は必要なバッファの文字数を返す (C++)

取得した文字列 (.Net)

C++

 enum LicenseInfoType {

 LI_PATH,

 LI_SERIAL,

 LI_COMPANY,

 LI_SECTION,

LI_USERNAME,

 LI_MAINTENANCE_LIMIT,

 };

.NET Framework /.NET (C#)

 public enum class AvsLicenseInfoType {

 LI_PATH,

 LI_SERIAL,

 LI_COMPANY,

 LI_SECTION,

LI_USERNAME,

 LI_MAINTENANCE_LIMIT,

 };

enum 値 値 説明

LI_PATH 0 ライセンスファイル（pdfviewersdk.lic）の絶対パス

68

LI_SERIAL 1 シリアルナンバー

LI_COMPANY 2 会社名

LI_SECTION 3 部署名

LI_USERNAME 4 ユーザー名

LI_MAINTENANCE_LIMIT 5 保守期限

解説：

指定されたライセンス情報を取得します。

ライセンスファイルに登録がない場合、空文字列が返る場合があります。

ライセンスファイルのロードに失敗した場合、LI_PATH の戻り値としてエラーメッセージを返しま
す。

7.2.101. 画 像 情 報 の 取 得

int getImageInfo(int pageNo, const RECT* rect, ImageInfo* buffer, int size) const;
ArrayList getImageInfo (int pageNo, AvsRect rect); (.Net)

int getImageInfo(int pageNo, const POINT& point, ImageInfo* buffer, int size) const;

ArrayList getImageInfo (int pageNo, AvsPoint point); (.Net)

引数：

pageNo：表示ページ番号(1 オリジン)

rect：矩形、NULL の場合はページ全体

pt: 点

buffer：文字列バッファ

size：バッファサイズ（文字数）

戻り値：

コピーした画像情報数。buffer が NULL の場合は必要なバッファ数を返す (C++)

C++

 class ImageInfo {

 public:

 RECT rect;

69

 int width;

 int height;
 };

.NET Framework /.NET (C#)

public class AvsImageInfo {

 public AvsRect Rect;

 public int Width;

 public int Height;

}

解説：

rect を指定した場合は、矩形に含まれる画像の情報、pt を指定した場合は、pt を含む画像の情報を
取得します。

70

8. エラー一覧表

・ エラーメッセージ中の XXXXX はメッセージの詳細です。「メッセージ詳細」を参照ください。

・ 「メッセージ詳細」に「※PDF エラー一覧」と記載があるメッセージは、詳細なエラーコード
（xxxx）および内容（XXXXX）について「PDF エラー一覧」を参照ください。

・ 「内容」の「※」は PDF 仕様をサポートしていない場合に出力されるメッセージであることを示し
ています。

・ エラーメッセージには、この他にも詳細情報が付加される場合があります。

8.1. エ ラ ー 一 覧 表

エラーコー

ド 10 進(16
進)

エラーメッセージ 内容 メッセージ詳細

1 (0001) SYSTEM ERROR: Out of memory. メモリ不足 −

2 (0002) SYSTEM ERROR: C++ exception:
<message>

C++ライブラリ例外 −

16385
(4001)

Printing is canceled.
XXXXX

印刷中止
(StartDoc() failed.)
<printer_name>

16387
(4003)

StartPage() failed or canceled.
StartPage() 失敗 −

16388
(4004)

EndPage() failed.
EndPage() 失敗 −

71

16401
(4011)

Rasterization error: XXXXX

画像出力失敗

Cannot create

rendering bitmap.

Cannot open file

Cannot save

bitmap.

Cannot write

stream

Cannot convert

image.

Cannot write multi

frame TIFF

Cannot flush multi
frame TIFF

16413
(401D)

AHPDF error: System Error : page
<pageno>

PDF データ解析時のエラー −

16420
(4024)

Cannot create font for water-mark. ウォーターマーク用フォントが
選択できない

−

16897
(4201)

File name is not specified:
axf:annotation-file-attachment.

注釈ファイル名がない −

16898
(4202)

Attachment is not found:

axf:annotation-file-attachment. file:
<filename>

添付ファイルがない −

16902

(4206)

AHPDF error (xxxx) : XXXXX ページコンテンツ解析時のエラ
ー

※PDF エラー一覧

16903
(4207)

AHPDF warning (xxxx) : XXXXX
ページコンテンツ解析時の警告 ※PDF エラー一覧

16905
(4209)

Unsupported PDF Shading Type
<shading_type>

サポートされないシェーディン
グタイプ ※

−

17284
(4384)

AHPDF information (xxxx) : XXXXX
ページコンテンツ解析時の情報 ※PDF エラー一覧

24585

(6009)

Cannot load license file: <licpath>
ライセンスが読めない

72

24591

(600F)

Evaluation license is expired: <licpath>
期限切れの評価版/試用版

32791
(8017)

Cannot open input file: <uri>

Cannot open input file: <uri> XXXX

入力ファイルがオープンできな
い。

Cannot connect

the Internet

Cannot open URL

HTTP request

failure

HTTP status is

yyy

Cannot get HTTP

status

Cannot access the

Internet

57473
(E081)

Cannot open PDF file. 入力ファイルがオープンできな
い。

−

Invalid PDF file. (xxxx) 入力 PDF ファイルが不正 ※PDF エラー一覧

Invalid PDF file.
XXXXX (xxxx)

入力 PDF ファイルが不正 ※PDF エラー一覧

Invalid PDF stream. (xxxx) 入力 PDF ストリームが不正 ※PDF エラー一覧

Invalid PDF stream.
XXXXX (xxxx)

入力 PDF ストリームが不正 ※PDF エラー一覧

PDF file is empty page. PDF ファイルのページがない −

57474
(E082)

PDF file is protected by a Password. PDF ファイルはパスワードで保
護されている

−

The password is incorrect. パスワードが不正 −

57985
(E281)

AHPDF warning (xxxx): XXXXX PDF ファイル解析時の警告（ペ
ージコンテンツ以外）

※PDF エラー一覧

58241
(E381)

AHPDF information (xxxx): XXXXX PDF ファイル解析時の情報（ペ
ージコンテンツ以外）

※PDF エラー一覧

73

58241
(E381)

RenderDirect2D warning (xxxx): XXXXX

Direct2D レンダリング時の警告

drawGraphic failed

with
E_INVALIDARG

drawGraphic failed

with
E_OUTOFMEMORY

74

8.2. PDF エ ラ ー 一 覧

エラーコー
ド 10 進

エラーメッセージ 内容

2 No authentication 認証されていない

3 Password is required パスワードが必要

4 Password is incorrect パスワード不一致

101 URI is empty URI が空

102 Cannot create input stream 入力ストリームが作れない

201 This is not a PDF PDF でない

202 Invalid PDF header PDF ヘッダ不正

203 Unsupported PDF version 非サポート PDF バージョン ※

205 Missing startxref startxref がない

206 Invalid <offset> offset startxref オフセットが正しくない

207 Out of range xref offset <offset> xref オフセットが範囲外

208 Expected xref xref が見つからない

211 Expected trailer trailer がない

212
Missing catalog dictionary for the PDF
document

文書カタログがない

215 Expected integer object 整数でなければならない

217 Invalid value 値不正 (引数に値)

218 Expected dictionary object 辞書でなければならない

219 Missing dictionary entry 辞書のエントリが存在しない

220 Missing or invalid dictionary entry 辞書のエントリが存在しないか値が正しくない

221 Invalid dictionary entry 辞書のエントリ値が正しくない (引数にキーと値)

222 Invalid array element at <offset> 配列の要素が正しくない (引数に要素番号)

223 Missing stream dictionary stream 辞書がない

224 Insufficient cross-reference stream cross-reference ストリームのサイズ不足

75

225 Invalid cross-reference stream cross-reference ストリームが正しくない

227 Unsupported security handler 非サポートセキュリティハンドラ ※

228 Unsupported crypt algorithm 非サポート暗号アルゴリズム ※

231
Unsupported revision of standard
security handler

非サポートリビジョン (標準セキュリティハンドラ)
※

232 Failure to decrypt object オブジェクトの復号に失敗

235
Undefined font of <token_offset> at
<offset>

フォントがない

236 Unsupported PDF that exceeds 2GB 2GB 超の PDF ※

1030 Missing %%EOF %%EOF がない

1031 Missing startxref startxref がない

1032 Invalid startxref offset startxref オフセットが正しくない

1034 Out of range xref offset <offset> xref オフセットが範囲外

1035 Expected xref xref が見つからない

1036 Expected xref xref が見つからない

1037 Invalid EOL xref entry xref のエントリ末 EOL 不正

1038 Invalid xref entry xref のエントリ不正

1041 Expected number object 数値でなければならない

1042 Expected name object 名前でなければならない

1043 Expected string object 文字列でなければならない

1044 Expected dictionary object 辞書でなければならない

1046 Expected name or array object 名前または配列でなければならない

1047 Expected stream object ストリームでなければならない

1048 Invalid token 不正なトークン (無視される)

1050
Invalid name /の後の名前に不正な#が含まれている(#を適当に解

釈)

1051 Too long name /の後の名前が長すぎる (そのまま)

1052 Expected object number object number が含まれていない

1053 Expected generation number generation number が含まれていない

76

1054 Invalid object number object number 不正

1055 Invalid generation number generation number 不正

1057 Too many obj contents obj 内容が複数

1058 No obj contents obj 内容がない (NullObject で代用)

1059 Missing endobj endobj がない

1060
No <offset> entry <objnum>
<generation>

xref に登録されていない object number

1061 Missing <endtoken> 終端トークンがない

1062 Invalid value 値不正 (引数に値)

1066 Missing dictionary entry 辞書のエントリが存在しない (引数にキー)

1067
Missing or invalid dictionary entry 辞書のエントリが存在しないか値が正しくない (引数

にキー)

1068 Invalid dictionary entry 辞書のエントリ値が正しくない (引数にキーと値)

1069 Dictionary key is not a name 辞書のキーが名前でない

1070 Duplicated dictionary key 辞書のキーが登録済み

1071 Missing dictionary value 辞書の値がない

1073 Dictionary value is not an integer 辞書の値が整数でない

1074 Dictionary value is not a number 辞書の値が数値でない

1075 Dictionary value is not an array 辞書の値が配列でない

1076 Dictionary value is not a dictionary 辞書の値が辞書でない

1078
Invalid rectangle array 辞書中の配列が矩形として正しくない (引数に辞書キ

ー)

1079 Invalid number value 辞書の数値が正しくない (引数に辞書キーと値)

1084 Missing endstream endstream がない

1085 Out of object-stream content object-stream の内容量以上の指定

1086 Invalid object-stream content object-stream の内容が正しくない

1088 Invalid array element at <arrayoffset> 配列の要素が正しくない (引数に要素番号)

1089 Array size is odd 配列の要素数が奇数

1090 Insufficent array size 配列の要素数が足りない (引数に必要数)

77

1091 Excessive array size 配列の要素数が多すぎる (引数に必要数)

1092 Invalid array size 配列の要素数が正しくない (引数に必要数)

1093 Invalud number value 配列の数値が正しくない (引数に要素番号と値)

1094 Unknown or unsupported filter 不明または未サポートのフィルタ ※

1096 Invalid stream data ストリームデータ不正 (デコード失敗)

1098 Invalid operand <operand> of <offset> コンテントのオペランド不足または、型が違う

1099
Reach end of contents, but <size>
objects are left

コンテントが空でないのに終わりに達した

1100 Graphic state is not saved GraphicState が保存されていない (q が多い)

1101 Nested <operator> at <offset> BT/BI が入れ子になっている

1102 <operator> is not called BT/BX/BI が呼ばれていない

1103 Invalid key value in BI-ID content BI-ID 内の対の要素の最初がキーでない

1104 Invalid entries count in BI-ID content BI-ID 内の要素が奇数

1105 Missing operator <operator> EI/EX/EMC がない

1109 Invalid color value 不正な色 (値が範囲外)

1111 Unsupported color space 未サポートの色空間 ※

1112 Unsupported font type 未サポートのフォント種別 ※

1113 Invalid /Differences code /Difference のコード不正

1115
Unknown or unsupported annotation
type

不明な注釈種別 ※

1116 Unknown or unsupported action type 不明なアクション種別 ※

1119 Not found destination name 宛先名が見つからない

1120 No file spec exists ファイル指定にファイル名が含まれていない

1121 Invalid RichText XML 不正な RichText

1122 Invalid CSS style text 不正な CSS スタイル

1123
Not found first page object <objnum>
in Linearized PDF

線形化 PDF で最初のページのオブジェクトがない

1124 First page of Linearized PDF is not 0 線形化 PDF で最初のページが 0 でない

1126 Unknown or unsupported field type 不明なフィールド種別 ※

78

1129 Invalid white space after ID ID に続く空白文字が不正

1131 Cannot resolve indirect object 間接参照が解決できない

1132 Not found page object ページオブジェクトがない

1151 Invalid image size 画像サイズ不正

1191 PostScript stack underflow 関数評価でスタックアンダフロー

1192 PostScript divide by zero 関数評価でゼロ除算

1193 PostScript math error 関数評価で算術演算例外

1194 PostScript syntax error PS 構文エラー

1195 PostScript invalid operand PS オペランド不正

1196 PostScript empty dictionary stack PS 辞書スタックが空

2049 Password is required パスワードが必要

2051 Password is incorrect パスワード不一致

2104 Unsupported value 未サポートの辞書の値 (引数に辞書キーと値) ※

2105 Invalid date value 不正な日付書式 (引数にキーと値)

2106 Invalid text string 不正なテキスト文字列 (引数にキー)

2083 Missing endobj endobj がない

2091
Missing or invalid dictionary entry 辞書のエントリが存在しないか値が正しくない (引数

にキー)

2092 Invalid dictionary entry 辞書のエントリ値が正しくない (引数にキーと値)

2096 Dictionary value is not an boolean 辞書の値が論理値でない

2119 Invalid use of filter alias 不正な別名フィルタの使用

2121 Invalid stream length ストリームのサイズ不正 (endstream が後ろに出現)

2130 Unknown operator 不明なオペレータ (他で代替)

2141 Unsupported action type 未サポートのアクション (引数に注釈種別) ※

2142 Unsupported annotation type 未サポートの注釈 (引数に注釈種別) ※

2149
Hint stream object should be <num>
instead of <num>

ヒントストリームが最後のオブジェクトでない

2176 Conflict colorspace image 色空間の矛盾する画像

2177 Conflict bits per component image BitsPerComponent の矛盾する画像

79

2178 Conflict image mask MASK の矛盾する画像

2500 PDF header is not top of file %PDF がファイルの先頭でない

2501 Reconstruct xref table xref 再構築

80

改訂履歴

年月 改定内容

2024 年 8 月 初版

2024 年 12 月 第 2 版 6.6 印刷について追加

2025 年 9 月 第 3 版 V6.0 改訂 2 版 Windows Server 2025 を対応 OS に追加

81

Antenna House PDF Viewer SDK V6
PDF Viewer API インタフェース仕様

© 2024- Antenna House, Inc. All rights reserved.

	1.概要
	2.動作環境
	2.1.対応OS
	2.2.仮想環境

	3.制限事項
	3.1.対象PDFファイル
	3.2.レンダリング品質および性能について
	3.3.複数プロセス/スレッドでの同時使用
	3.4..NET / .NET Frameworkからの利用
	3.5.その他

	4.開発環境
	4.1.C++/C
	4.2..NET および .NET Framework
	4.3.インタフェース
	4.3.1.C++/C
	4.3.2..Net8
	4.3.3..Net6
	4.3.4..Net Framework

	4.4.実行に必要なファイル

	5.機能
	6.ご利用上の注意
	6.1.文字列
	6.2.座標系
	6.3.レンダリングモード
	6.3.1.Direct2D
	6.3.2.GDI+

	6.4.32bit版／64bit版
	6.5.エラー処理について
	6.5.1.API呼び出し時の結果判定
	6.5.2.エラーについて

	6.6.印刷について
	6.7..NETおよび.NET Frameworkインタフェース
	6.8.Cインタフェース

	7.クラス
	7.1.クラス名
	7.2.メソッド
	7.2.1.ストリームオープン
	7.2.2.ファイルオープン
	7.2.3.クローズ
	7.2.4.読み込みスレッド開始
	7.2.5.オープンされているか
	7.2.6.内容のコピー可能か
	7.2.7.印刷可能か
	7.2.8.SDKバージョン番号の取得
	7.2.9.PDFバージョンの取得
	7.2.10.作成日付の取得
	7.2.11.更新日付の取得
	7.2.12.タイトルの取得
	7.2.13.作成者の取得
	7.2.14.サブタイトルの取得
	7.2.15.キーワードの取得
	7.2.16.アプリケーションの取得
	7.2.17.PDF変換の取得
	7.2.18.ページ数の取得
	7.2.19.解析済みページ数の取得
	7.2.20.ページサイズの取得
	7.2.21.ページの表示
	7.2.22.リモートデスクトップ表示モードの設定
	7.2.23.リモートデスクトップ表示モードか問い合わせる
	7.2.24.バッファ表示モードの設定
	7.2.25.バッファ表示モードか問い合わせる
	7.2.26.表示バッファの削除
	7.2.27.スムージングが利用できるか問い合わせる
	7.2.28.スムージングの設定
	7.2.29.スムージング設定の取得
	7.2.30.文字表示の問い合わせ
	7.2.31.文字表示の設定
	7.2.32.Direct2Dを使用するか
	7.2.33.Direct2D設定
	7.2.34.注釈表示の問い合わせ
	7.2.35.注釈表示の設定
	7.2.36.高速プレビューモードか
	7.2.37.高速プレビューモード設定
	7.2.38.ブレンドモード無効か
	7.2.39.ブレンドモード無効設定
	7.2.40.ウォータマークテキスト設定
	7.2.41.ウォータマークテキスト取得
	7.2.42.ウォータマークフォントファミリ設定
	7.2.43.ウォータマークフォントファミリ取得
	7.2.44.ウォータマークフォントウエイト設定
	7.2.45.ウォータマークフォントウエイト取得
	7.2.46.ウォータマークフォントスタイル設定
	7.2.47.ウォータマークフォントスタイル取得
	7.2.48.ウォータマーク不透明度設定
	7.2.49.ウォータマーク不透明度取得
	7.2.50.印刷開始
	7.2.51.印刷終了
	7.2.52.印刷中止
	7.2.53.ページの印刷
	7.2.54.印刷開始（拡張）
	7.2.55.GdiPlusでイメージを操作するか問い合わせ
	7.2.56.GdiPlusでイメージを操作する設定
	7.2.57.BMPの作成
	7.2.58.JPEGの作成
	7.2.59.PNGの作成
	7.2.60.TIFFの作成
	7.2.61.検索ページ指定
	7.2.62.検索ページ数の設定
	7.2.63.文字列検索
	7.2.64.全検索
	7.2.65.次検索
	7.2.66.検索状態解除
	7.2.67.マーク解除
	7.2.68.検索位置取得
	7.2.69.ページの検索結果取得
	7.2.70.検索状態かの問い合わせ
	7.2.71.全検索状態かの問い合わせ
	7.2.72.全検索でマークした個数を得る
	7.2.73.反転色の設定
	7.2.74.矩形内テキストの取得
	7.2.75.全選択設定
	7.2.76.全テキスト取得
	7.2.77.矩形選択の設定
	7.2.78.ページ回転の取得
	7.2.79.ページ回転の設定
	7.2.80.リンク注釈ヒットテスト
	7.2.81.リンク注釈内部矩形取得
	7.2.82.リンク注釈外部ファイル名取得
	7.2.83.デフォルトフォントの設定
	7.2.84.読み込みページ数の設定
	7.2.85.読み込みメモリ上限の設定
	7.2.86.テキスト位置の取得
	7.2.87.テキスト範囲の取得
	7.2.88.位置指定テキスト取得
	7.2.89.矩形内テキスト範囲の取得
	7.2.90.矩形内テキスト情報の取得
	7.2.91.位置指定テキスト情報の取得
	7.2.92.矩形内パス情報の取得
	7.2.93.カラープロファイルの設定
	7.2.94.エラーがあるか
	7.2.95.致命的エラーか
	7.2.96.エラー番号の取得
	7.2.97.エラーメッセージの取得
	7.2.98.エラーの廃棄
	7.2.99.エラーのクリア
	7.2.100.ライセンス情報の取得
	7.2.101.画像情報の取得

	8.エラー一覧表
	8.1.エラー一覧表
	8.2.PDFエラー一覧

	改訂履歴

